Set of elliptic integrals
In mathematics , the Carlson symmetric forms of elliptic integrals are a small canonical set of elliptic integrals to which all others may be reduced. They are a modern alternative to the Legendre forms . The Legendre forms may be expressed in terms of the Carlson forms and vice versa.
The Carlson elliptic integrals are:[ 1] R F ( x , y , z ) = 1 2 ∫ 0 ∞ d t ( t + x ) ( t + y ) ( t + z ) {\displaystyle R_{F}(x,y,z)={\tfrac {1}{2}}\int _{0}^{\infty }{\frac {dt}{\sqrt {(t+x)(t+y)(t+z)}}}} R J ( x , y , z , p ) = 3 2 ∫ 0 ∞ d t ( t + p ) ( t + x ) ( t + y ) ( t + z ) {\displaystyle R_{J}(x,y,z,p)={\tfrac {3}{2}}\int _{0}^{\infty }{\frac {dt}{(t+p){\sqrt {(t+x)(t+y)(t+z)}}}}} R G ( x , y , z ) = 1 4 ∫ 0 ∞ 1 ( t + x ) ( t + y ) ( t + z ) ( x t + x + y t + y + z t + z ) t d t {\displaystyle R_{G}(x,y,z)={\tfrac {1}{4}}\int _{0}^{\infty }{\frac {1}{\sqrt {(t+x)(t+y)(t+z)}}}{\biggl (}{\frac {x}{t+x}}+{\frac {y}{t+y}}+{\frac {z}{t+z}}{\biggr )}t\,dt} R C ( x , y ) = R F ( x , y , y ) = 1 2 ∫ 0 ∞ d t ( t + y ) ( t + x ) {\displaystyle R_{C}(x,y)=R_{F}(x,y,y)={\tfrac {1}{2}}\int _{0}^{\infty }{\frac {dt}{(t+y){\sqrt {(t+x)}}}}} R D ( x , y , z ) = R J ( x , y , z , z ) = 3 2 ∫ 0 ∞ d t ( t + z ) ( t + x ) ( t + y ) ( t + z ) {\displaystyle R_{D}(x,y,z)=R_{J}(x,y,z,z)={\tfrac {3}{2}}\int _{0}^{\infty }{\frac {dt}{(t+z)\,{\sqrt {(t+x)(t+y)(t+z)}}}}}
Since R C {\displaystyle R_{C}} and R D {\displaystyle R_{D}} are special cases of R F {\displaystyle R_{F}} and R J {\displaystyle R_{J}} , all elliptic integrals can ultimately be evaluated in terms of just R F {\displaystyle R_{F}} , R J {\displaystyle R_{J}} , and R G {\displaystyle R_{G}} .
The term symmetric refers to the fact that in contrast to the Legendre forms, these functions are unchanged by the exchange of certain subsets of their arguments. The value of R F ( x , y , z ) {\displaystyle R_{F}(x,y,z)} is the same for any permutation of its arguments, and the value of R J ( x , y , z , p ) {\displaystyle R_{J}(x,y,z,p)} is the same for any permutation of its first three arguments.
The Carlson elliptic integrals are named after Bille C. Carlson (1924-2013).
Incomplete elliptic integrals [ edit ] Incomplete elliptic integrals can be calculated easily using Carlson symmetric forms:
F ( ϕ , k ) = sin ϕ R F ( cos 2 ϕ , 1 − k 2 sin 2 ϕ , 1 ) {\displaystyle F(\phi ,k)=\sin \phi R_{F}\left(\cos ^{2}\phi ,1-k^{2}\sin ^{2}\phi ,1\right)} E ( ϕ , k ) = sin ϕ R F ( cos 2 ϕ , 1 − k 2 sin 2 ϕ , 1 ) − 1 3 k 2 sin 3 ϕ R D ( cos 2 ϕ , 1 − k 2 sin 2 ϕ , 1 ) {\displaystyle E(\phi ,k)=\sin \phi R_{F}\left(\cos ^{2}\phi ,1-k^{2}\sin ^{2}\phi ,1\right)-{\tfrac {1}{3}}k^{2}\sin ^{3}\phi R_{D}\left(\cos ^{2}\phi ,1-k^{2}\sin ^{2}\phi ,1\right)} Π ( ϕ , n , k ) = sin ϕ R F ( cos 2 ϕ , 1 − k 2 sin 2 ϕ , 1 ) + 1 3 n sin 3 ϕ R J ( cos 2 ϕ , 1 − k 2 sin 2 ϕ , 1 , 1 − n sin 2 ϕ ) {\displaystyle \Pi (\phi ,n,k)=\sin \phi R_{F}\left(\cos ^{2}\phi ,1-k^{2}\sin ^{2}\phi ,1\right)+{\tfrac {1}{3}}n\sin ^{3}\phi R_{J}\left(\cos ^{2}\phi ,1-k^{2}\sin ^{2}\phi ,1,1-n\sin ^{2}\phi \right)} (Note: the above are only valid for − π 2 ≤ ϕ ≤ π 2 {\displaystyle -{\frac {\pi }{2}}\leq \phi \leq {\frac {\pi }{2}}} and 0 ≤ k 2 sin 2 ϕ ≤ 1 {\displaystyle 0\leq k^{2}\sin ^{2}\phi \leq 1} )
Complete elliptic integrals [ edit ] Complete elliptic integrals can be calculated by substituting φ = 1 ⁄2 π:
K ( k ) = R F ( 0 , 1 − k 2 , 1 ) {\displaystyle K(k)=R_{F}\left(0,1-k^{2},1\right)} E ( k ) = R F ( 0 , 1 − k 2 , 1 ) − 1 3 k 2 R D ( 0 , 1 − k 2 , 1 ) {\displaystyle E(k)=R_{F}\left(0,1-k^{2},1\right)-{\tfrac {1}{3}}k^{2}R_{D}\left(0,1-k^{2},1\right)} Π ( n , k ) = R F ( 0 , 1 − k 2 , 1 ) + 1 3 n R J ( 0 , 1 − k 2 , 1 , 1 − n ) {\displaystyle \Pi (n,k)=R_{F}\left(0,1-k^{2},1\right)+{\tfrac {1}{3}}nR_{J}\left(0,1-k^{2},1,1-n\right)} When any two, or all three of the arguments of R F {\displaystyle R_{F}} are the same, then a substitution of t + x = u {\displaystyle {\sqrt {t+x}}=u} renders the integrand rational. The integral can then be expressed in terms of elementary transcendental functions .
R C ( x , y ) = R F ( x , y , y ) = 1 2 ∫ 0 ∞ d t t + x ( t + y ) = ∫ x ∞ d u u 2 − x + y = { arccos x / y y − x , x < y 1 y , x = y arcosh x / y x − y , x > y {\displaystyle R_{C}(x,y)=R_{F}(x,y,y)={\frac {1}{2}}\int _{0}^{\infty }{\frac {dt}{{\sqrt {t+x}}(t+y)}}=\int _{\sqrt {x}}^{\infty }{\frac {du}{u^{2}-x+y}}={\begin{cases}{\frac {\arccos {\sqrt {{x}/{y}}}}{\sqrt {y-x}}},&x<y\\{\frac {1}{\sqrt {y}}},&x=y\\{\frac {\operatorname {arcosh} {\sqrt {{x}/{y}}}}{\sqrt {x-y}}},&x>y\\\end{cases}}} Similarly, when at least two of the first three arguments of R J {\displaystyle R_{J}} are the same,
R J ( x , y , y , p ) = 3 ∫ x ∞ d u ( u 2 − x + y ) ( u 2 − x + p ) = { 3 p − y ( R C ( x , y ) − R C ( x , p ) ) , y ≠ p 3 2 ( y − x ) ( R C ( x , y ) − 1 y x ) , y = p ≠ x 1 y 3 / 2 , y = p = x {\displaystyle R_{J}(x,y,y,p)=3\int _{\sqrt {x}}^{\infty }{\frac {du}{(u^{2}-x+y)(u^{2}-x+p)}}={\begin{cases}{\frac {3}{p-y}}(R_{C}(x,y)-R_{C}(x,p)),&y\neq p\\{\frac {3}{2(y-x)}}\left(R_{C}(x,y)-{\frac {1}{y}}{\sqrt {x}}\right),&y=p\neq x\\{\frac {1}{y^{{3}/{2}}}},&y=p=x\\\end{cases}}} By substituting in the integral definitions t = κ u {\displaystyle t=\kappa u} for any constant κ {\displaystyle \kappa } , it is found that
R F ( κ x , κ y , κ z ) = κ − 1 / 2 R F ( x , y , z ) {\displaystyle R_{F}\left(\kappa x,\kappa y,\kappa z\right)=\kappa ^{-1/2}R_{F}(x,y,z)} R J ( κ x , κ y , κ z , κ p ) = κ − 3 / 2 R J ( x , y , z , p ) {\displaystyle R_{J}\left(\kappa x,\kappa y,\kappa z,\kappa p\right)=\kappa ^{-3/2}R_{J}(x,y,z,p)} Duplication theorem [ edit ] R F ( x , y , z ) = 2 R F ( x + λ , y + λ , z + λ ) = R F ( x + λ 4 , y + λ 4 , z + λ 4 ) , {\displaystyle R_{F}(x,y,z)=2R_{F}(x+\lambda ,y+\lambda ,z+\lambda )=R_{F}\left({\frac {x+\lambda }{4}},{\frac {y+\lambda }{4}},{\frac {z+\lambda }{4}}\right),} where λ = x y + y z + z x {\displaystyle \lambda ={\sqrt {x}}{\sqrt {y}}+{\sqrt {y}}{\sqrt {z}}+{\sqrt {z}}{\sqrt {x}}} .
R J ( x , y , z , p ) = 2 R J ( x + λ , y + λ , z + λ , p + λ ) + 6 R C ( d 2 , d 2 + ( p − x ) ( p − y ) ( p − z ) ) = 1 4 R J ( x + λ 4 , y + λ 4 , z + λ 4 , p + λ 4 ) + 6 R C ( d 2 , d 2 + ( p − x ) ( p − y ) ( p − z ) ) {\displaystyle {\begin{aligned}R_{J}(x,y,z,p)&=2R_{J}(x+\lambda ,y+\lambda ,z+\lambda ,p+\lambda )+6R_{C}(d^{2},d^{2}+(p-x)(p-y)(p-z))\\&={\frac {1}{4}}R_{J}\left({\frac {x+\lambda }{4}},{\frac {y+\lambda }{4}},{\frac {z+\lambda }{4}},{\frac {p+\lambda }{4}}\right)+6R_{C}(d^{2},d^{2}+(p-x)(p-y)(p-z))\end{aligned}}} [ 2] where d = ( p + x ) ( p + y ) ( p + z ) {\displaystyle d=({\sqrt {p}}+{\sqrt {x}})({\sqrt {p}}+{\sqrt {y}})({\sqrt {p}}+{\sqrt {z}})} and λ = x y + y z + z x {\displaystyle \lambda ={\sqrt {x}}{\sqrt {y}}+{\sqrt {y}}{\sqrt {z}}+{\sqrt {z}}{\sqrt {x}}}
In obtaining a Taylor series expansion for R F {\displaystyle R_{F}} or R J {\displaystyle R_{J}} it proves convenient to expand about the mean value of the several arguments. So for R F {\displaystyle R_{F}} , letting the mean value of the arguments be A = ( x + y + z ) / 3 {\displaystyle A=(x+y+z)/3} , and using homogeneity, define Δ x {\displaystyle \Delta x} , Δ y {\displaystyle \Delta y} and Δ z {\displaystyle \Delta z} by
R F ( x , y , z ) = R F ( A ( 1 − Δ x ) , A ( 1 − Δ y ) , A ( 1 − Δ z ) ) = 1 A R F ( 1 − Δ x , 1 − Δ y , 1 − Δ z ) {\displaystyle {\begin{aligned}R_{F}(x,y,z)&=R_{F}(A(1-\Delta x),A(1-\Delta y),A(1-\Delta z))\\&={\frac {1}{\sqrt {A}}}R_{F}(1-\Delta x,1-\Delta y,1-\Delta z)\end{aligned}}} that is Δ x = 1 − x / A {\displaystyle \Delta x=1-x/A} etc. The differences Δ x {\displaystyle \Delta x} , Δ y {\displaystyle \Delta y} and Δ z {\displaystyle \Delta z} are defined with this sign (such that they are subtracted ), in order to be in agreement with Carlson's papers. Since R F ( x , y , z ) {\displaystyle R_{F}(x,y,z)} is symmetric under permutation of x {\displaystyle x} , y {\displaystyle y} and z {\displaystyle z} , it is also symmetric in the quantities Δ x {\displaystyle \Delta x} , Δ y {\displaystyle \Delta y} and Δ z {\displaystyle \Delta z} . It follows that both the integrand of R F {\displaystyle R_{F}} and its integral can be expressed as functions of the elementary symmetric polynomials in Δ x {\displaystyle \Delta x} , Δ y {\displaystyle \Delta y} and Δ z {\displaystyle \Delta z} which are
E 1 = Δ x + Δ y + Δ z = 0 {\displaystyle E_{1}=\Delta x+\Delta y+\Delta z=0} E 2 = Δ x Δ y + Δ y Δ z + Δ z Δ x {\displaystyle E_{2}=\Delta x\Delta y+\Delta y\Delta z+\Delta z\Delta x} E 3 = Δ x Δ y Δ z {\displaystyle E_{3}=\Delta x\Delta y\Delta z} Expressing the integrand in terms of these polynomials, performing a multidimensional Taylor expansion and integrating term-by-term...
R F ( x , y , z ) = 1 2 A ∫ 0 ∞ 1 ( t + 1 ) 3 − ( t + 1 ) 2 E 1 + ( t + 1 ) E 2 − E 3 d t = 1 2 A ∫ 0 ∞ ( 1 ( t + 1 ) 3 2 − E 2 2 ( t + 1 ) 7 2 + E 3 2 ( t + 1 ) 9 2 + 3 E 2 2 8 ( t + 1 ) 11 2 − 3 E 2 E 3 4 ( t + 1 ) 13 2 + O ( E 1 ) + O ( Δ 6 ) ) d t = 1 A ( 1 − 1 10 E 2 + 1 14 E 3 + 1 24 E 2 2 − 3 44 E 2 E 3 + O ( E 1 ) + O ( Δ 6 ) ) {\displaystyle {\begin{aligned}R_{F}(x,y,z)&={\frac {1}{2{\sqrt {A}}}}\int _{0}^{\infty }{\frac {1}{\sqrt {(t+1)^{3}-(t+1)^{2}E_{1}+(t+1)E_{2}-E_{3}}}}dt\\&={\frac {1}{2{\sqrt {A}}}}\int _{0}^{\infty }\left({\frac {1}{(t+1)^{\frac {3}{2}}}}-{\frac {E_{2}}{2(t+1)^{\frac {7}{2}}}}+{\frac {E_{3}}{2(t+1)^{\frac {9}{2}}}}+{\frac {3E_{2}^{2}}{8(t+1)^{\frac {11}{2}}}}-{\frac {3E_{2}E_{3}}{4(t+1)^{\frac {13}{2}}}}+O(E_{1})+O(\Delta ^{6})\right)dt\\&={\frac {1}{\sqrt {A}}}\left(1-{\frac {1}{10}}E_{2}+{\frac {1}{14}}E_{3}+{\frac {1}{24}}E_{2}^{2}-{\frac {3}{44}}E_{2}E_{3}+O(E_{1})+O(\Delta ^{6})\right)\end{aligned}}} The advantage of expanding about the mean value of the arguments is now apparent; it reduces E 1 {\displaystyle E_{1}} identically to zero, and so eliminates all terms involving E 1 {\displaystyle E_{1}} - which otherwise would be the most numerous.
An ascending series for R J {\displaystyle R_{J}} may be found in a similar way. There is a slight difficulty because R J {\displaystyle R_{J}} is not fully symmetric; its dependence on its fourth argument, p {\displaystyle p} , is different from its dependence on x {\displaystyle x} , y {\displaystyle y} and z {\displaystyle z} . This is overcome by treating R J {\displaystyle R_{J}} as a fully symmetric function of five arguments, two of which happen to have the same value p {\displaystyle p} . The mean value of the arguments is therefore taken to be
A = x + y + z + 2 p 5 {\displaystyle A={\frac {x+y+z+2p}{5}}} and the differences Δ x {\displaystyle \Delta x} , Δ y {\displaystyle \Delta y} Δ z {\displaystyle \Delta z} and Δ p {\displaystyle \Delta p} defined by
R J ( x , y , z , p ) = R J ( A ( 1 − Δ x ) , A ( 1 − Δ y ) , A ( 1 − Δ z ) , A ( 1 − Δ p ) ) = 1 A 3 2 R J ( 1 − Δ x , 1 − Δ y , 1 − Δ z , 1 − Δ p ) {\displaystyle {\begin{aligned}R_{J}(x,y,z,p)&=R_{J}(A(1-\Delta x),A(1-\Delta y),A(1-\Delta z),A(1-\Delta p))\\&={\frac {1}{A^{\frac {3}{2}}}}R_{J}(1-\Delta x,1-\Delta y,1-\Delta z,1-\Delta p)\end{aligned}}} The elementary symmetric polynomials in Δ x {\displaystyle \Delta x} , Δ y {\displaystyle \Delta y} , Δ z {\displaystyle \Delta z} , Δ p {\displaystyle \Delta p} and (again) Δ p {\displaystyle \Delta p} are in full
E 1 = Δ x + Δ y + Δ z + 2 Δ p = 0 {\displaystyle E_{1}=\Delta x+\Delta y+\Delta z+2\Delta p=0} E 2 = Δ x Δ y + Δ y Δ z + 2 Δ z Δ p + Δ p 2 + 2 Δ p Δ x + Δ x Δ z + 2 Δ y Δ p {\displaystyle E_{2}=\Delta x\Delta y+\Delta y\Delta z+2\Delta z\Delta p+\Delta p^{2}+2\Delta p\Delta x+\Delta x\Delta z+2\Delta y\Delta p} E 3 = Δ z Δ p 2 + Δ x Δ p 2 + 2 Δ x Δ y Δ p + Δ x Δ y Δ z + 2 Δ y Δ z Δ p + Δ y Δ p 2 + 2 Δ x Δ z Δ p {\displaystyle E_{3}=\Delta z\Delta p^{2}+\Delta x\Delta p^{2}+2\Delta x\Delta y\Delta p+\Delta x\Delta y\Delta z+2\Delta y\Delta z\Delta p+\Delta y\Delta p^{2}+2\Delta x\Delta z\Delta p} E 4 = Δ y Δ z Δ p 2 + Δ x Δ z Δ p 2 + Δ x Δ y Δ p 2 + 2 Δ x Δ y Δ z Δ p {\displaystyle E_{4}=\Delta y\Delta z\Delta p^{2}+\Delta x\Delta z\Delta p^{2}+\Delta x\Delta y\Delta p^{2}+2\Delta x\Delta y\Delta z\Delta p} E 5 = Δ x Δ y Δ z Δ p 2 {\displaystyle E_{5}=\Delta x\Delta y\Delta z\Delta p^{2}} However, it is possible to simplify the formulae for E 2 {\displaystyle E_{2}} , E 3 {\displaystyle E_{3}} and E 4 {\displaystyle E_{4}} using the fact that E 1 = 0 {\displaystyle E_{1}=0} . Expressing the integrand in terms of these polynomials, performing a multidimensional Taylor expansion and integrating term-by-term as before...
R J ( x , y , z , p ) = 3 2 A 3 2 ∫ 0 ∞ 1 ( t + 1 ) 5 − ( t + 1 ) 4 E 1 + ( t + 1 ) 3 E 2 − ( t + 1 ) 2 E 3 + ( t + 1 ) E 4 − E 5 d t = 3 2 A 3 2 ∫ 0 ∞ ( 1 ( t + 1 ) 5 2 − E 2 2 ( t + 1 ) 9 2 + E 3 2 ( t + 1 ) 11 2 + 3 E 2 2 − 4 E 4 8 ( t + 1 ) 13 2 + 2 E 5 − 3 E 2 E 3 4 ( t + 1 ) 15 2 + O ( E 1 ) + O ( Δ 6 ) ) d t = 1 A 3 2 ( 1 − 3 14 E 2 + 1 6 E 3 + 9 88 E 2 2 − 3 22 E 4 − 9 52 E 2 E 3 + 3 26 E 5 + O ( E 1 ) + O ( Δ 6 ) ) {\displaystyle {\begin{aligned}R_{J}(x,y,z,p)&={\frac {3}{2A^{\frac {3}{2}}}}\int _{0}^{\infty }{\frac {1}{\sqrt {(t+1)^{5}-(t+1)^{4}E_{1}+(t+1)^{3}E_{2}-(t+1)^{2}E_{3}+(t+1)E_{4}-E_{5}}}}dt\\&={\frac {3}{2A^{\frac {3}{2}}}}\int _{0}^{\infty }\left({\frac {1}{(t+1)^{\frac {5}{2}}}}-{\frac {E_{2}}{2(t+1)^{\frac {9}{2}}}}+{\frac {E_{3}}{2(t+1)^{\frac {11}{2}}}}+{\frac {3E_{2}^{2}-4E_{4}}{8(t+1)^{\frac {13}{2}}}}+{\frac {2E_{5}-3E_{2}E_{3}}{4(t+1)^{\frac {15}{2}}}}+O(E_{1})+O(\Delta ^{6})\right)dt\\&={\frac {1}{A^{\frac {3}{2}}}}\left(1-{\frac {3}{14}}E_{2}+{\frac {1}{6}}E_{3}+{\frac {9}{88}}E_{2}^{2}-{\frac {3}{22}}E_{4}-{\frac {9}{52}}E_{2}E_{3}+{\frac {3}{26}}E_{5}+O(E_{1})+O(\Delta ^{6})\right)\end{aligned}}} As with R J {\displaystyle R_{J}} , by expanding about the mean value of the arguments, more than half the terms (those involving E 1 {\displaystyle E_{1}} ) are eliminated.
In general, the arguments x, y, z of Carlson's integrals may not be real and negative, as this would place a branch point on the path of integration, making the integral ambiguous. However, if the second argument of R C {\displaystyle R_{C}} , or the fourth argument, p, of R J {\displaystyle R_{J}} is negative, then this results in a simple pole on the path of integration. In these cases the Cauchy principal value (finite part) of the integrals may be of interest; these are
p . v . R C ( x , − y ) = x x + y R C ( x + y , y ) , {\displaystyle \mathrm {p.v.} \;R_{C}(x,-y)={\sqrt {\frac {x}{x+y}}}\,R_{C}(x+y,y),} and
p . v . R J ( x , y , z , − p ) = ( q − y ) R J ( x , y , z , q ) − 3 R F ( x , y , z ) + 3 y R C ( x z , − p q ) y + p = ( q − y ) R J ( x , y , z , q ) − 3 R F ( x , y , z ) + 3 x y z x z + p q R C ( x z + p q , p q ) y + p {\displaystyle {\begin{aligned}\mathrm {p.v.} \;R_{J}(x,y,z,-p)&={\frac {(q-y)R_{J}(x,y,z,q)-3R_{F}(x,y,z)+3{\sqrt {y}}R_{C}(xz,-pq)}{y+p}}\\&={\frac {(q-y)R_{J}(x,y,z,q)-3R_{F}(x,y,z)+3{\sqrt {\frac {xyz}{xz+pq}}}R_{C}(xz+pq,pq)}{y+p}}\end{aligned}}} where
q = y + ( z − y ) ( y − x ) y + p . {\displaystyle q=y+{\frac {(z-y)(y-x)}{y+p}}.} which must be greater than zero for R J ( x , y , z , q ) {\displaystyle R_{J}(x,y,z,q)} to be evaluated. This may be arranged by permuting x, y and z so that the value of y is between that of x and z.
Numerical evaluation [ edit ] The duplication theorem can be used for a fast and robust evaluation of the Carlson symmetric form of elliptic integrals and therefore also for the evaluation of Legendre-form of elliptic integrals. Let us calculate R F ( x , y , z ) {\displaystyle R_{F}(x,y,z)} : first, define x 0 = x {\displaystyle x_{0}=x} , y 0 = y {\displaystyle y_{0}=y} and z 0 = z {\displaystyle z_{0}=z} . Then iterate the series
λ n = x n y n + y n z n + z n x n , {\displaystyle \lambda _{n}={\sqrt {x_{n}}}{\sqrt {y_{n}}}+{\sqrt {y_{n}}}{\sqrt {z_{n}}}+{\sqrt {z_{n}}}{\sqrt {x_{n}}},} x n + 1 = x n + λ n 4 , y n + 1 = y n + λ n 4 , z n + 1 = z n + λ n 4 {\displaystyle x_{n+1}={\frac {x_{n}+\lambda _{n}}{4}},y_{n+1}={\frac {y_{n}+\lambda _{n}}{4}},z_{n+1}={\frac {z_{n}+\lambda _{n}}{4}}} until the desired precision is reached: if x {\displaystyle x} , y {\displaystyle y} and z {\displaystyle z} are non-negative, all of the series will converge quickly to a given value, say, μ {\displaystyle \mu } . Therefore,
R F ( x , y , z ) = R F ( μ , μ , μ ) = μ − 1 / 2 . {\displaystyle R_{F}\left(x,y,z\right)=R_{F}\left(\mu ,\mu ,\mu \right)=\mu ^{-1/2}.} Evaluating R C ( x , y ) {\displaystyle R_{C}(x,y)} is much the same due to the relation
R C ( x , y ) = R F ( x , y , y ) . {\displaystyle R_{C}\left(x,y\right)=R_{F}\left(x,y,y\right).} References and External links [ edit ] B. C. Carlson, John L. Gustafson 'Asymptotic approximations for symmetric elliptic integrals' 1993 arXiv B. C. Carlson 'Numerical Computation of Real Or Complex Elliptic Integrals' 1994 arXiv B. C. Carlson 'Elliptic Integrals:Symmetric Integrals' in Chap. 19 of Digital Library of Mathematical Functions . Release date 2010-05-07. National Institute of Standards and Technology. 'Profile: Bille C. Carlson' in Digital Library of Mathematical Functions . National Institute of Standards and Technology. Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007), "Section 6.12. Elliptic Integrals and Jacobian Elliptic Functions" , Numerical Recipes: The Art of Scientific Computing (3rd ed.), New York: Cambridge University Press, ISBN 978-0-521-88068-8 , archived from the original on 2011-08-11, retrieved 2011-08-10 Fortran code from SLATEC for evaluating RF , RJ , RC , RD ,