In algebra, the continuant is a multivariate polynomial representing the determinant of a tridiagonal matrix and having applications in continued fractions.
The n-th continuant
is defined recursively by
![{\displaystyle K_{0}=1;\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/97b6655c7ff8e896284e5816072026e08b5b8e34)
![{\displaystyle K_{1}(x_{1})=x_{1};\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/41ed4ec18d298777c4a97a3540fa72e19963854d)
![{\displaystyle K_{n}(x_{1},\;x_{2},\;\ldots ,\;x_{n})=x_{n}K_{n-1}(x_{1},\;x_{2},\;\ldots ,\;x_{n-1})+K_{n-2}(x_{1},\;x_{2},\;\ldots ,\;x_{n-2}).\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dfe367c130e611a2091263040513368292edf397)
- The continuant
can be computed by taking the sum of all possible products of x1,...,xn, in which any number of disjoint pairs of consecutive terms are deleted (Euler's rule). For example, ![{\displaystyle K_{5}(x_{1},\;x_{2},\;x_{3},\;x_{4},\;x_{5})=x_{1}x_{2}x_{3}x_{4}x_{5}\;+\;x_{3}x_{4}x_{5}\;+\;x_{1}x_{4}x_{5}\;+\;x_{1}x_{2}x_{5}\;+\;x_{1}x_{2}x_{3}\;+\;x_{1}\;+\;x_{3}\;+\;x_{5}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/af1f55a0ab88b60898b5e1614d483d69dd0224f9)
- It follows that continuants are invariant with respect to reversing the order of indeterminates:
![{\displaystyle K_{n}(x_{1},\;\ldots ,\;x_{n})=K_{n}(x_{n},\;\ldots ,\;x_{1}).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/54c0abfb81b77339d549437954be942106128912)
- The continuant can be computed as the determinant of a tridiagonal matrix:
![{\displaystyle K_{n}(x_{1},\;x_{2},\;\ldots ,\;x_{n})=\det {\begin{pmatrix}x_{1}&1&0&\cdots &0\\-1&x_{2}&1&\ddots &\vdots \\0&-1&\ddots &\ddots &0\\\vdots &\ddots &\ddots &\ddots &1\\0&\cdots &0&-1&x_{n}\end{pmatrix}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fb74fd44fbc50d3c7d3bb0c6337bd89a24495dd1)
, the (n+1)-st Fibonacci number. ![{\displaystyle {\frac {K_{n}(x_{1},\;\ldots ,\;x_{n})}{K_{n-1}(x_{2},\;\ldots ,\;x_{n})}}=x_{1}+{\frac {K_{n-2}(x_{3},\;\ldots ,\;x_{n})}{K_{n-1}(x_{2},\;\ldots ,\;x_{n})}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e36792479e5ec9b73561cb77566d8100612a819b)
- Ratios of continuants represent (convergents to) continued fractions as follows:
![{\displaystyle {\frac {K_{n}(x_{1},\;\ldots ,x_{n})}{K_{n-1}(x_{2},\;\ldots ,\;x_{n})}}=[x_{1};\;x_{2},\;\ldots ,\;x_{n}]=x_{1}+{\frac {1}{\displaystyle {x_{2}+{\frac {1}{x_{3}+\ldots }}}}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/66a69721671ddcc8d06eb6f12b42d1a281e6476f)
- The following matrix identity holds:
.
- For determinants, it implies that
![{\displaystyle K_{n}(x_{1},\;\ldots ,\;x_{n})\cdot K_{n-2}(x_{2},\;\ldots ,\;x_{n-1})-K_{n-1}(x_{1},\;\ldots ,\;x_{n-1})\cdot K_{n-1}(x_{2},\;\ldots ,\;x_{n})=(-1)^{n}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b9f4222814efc26b71ea68ac5515cefe36aa878f)
- and also
![{\displaystyle K_{n-1}(x_{2},\;\ldots ,\;x_{n})\cdot K_{n+2}(x_{1},\;\ldots ,\;x_{n+2})-K_{n}(x_{1},\;\ldots ,\;x_{n})\cdot K_{n+1}(x_{2},\;\ldots ,\;x_{n+2})=(-1)^{n+1}x_{n+2}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4d330b978c0890817e9100d0d2bd3ed488fb40da)
A generalized definition takes the continuant with respect to three sequences a, b and c, so that K(n) is a polynomial of a1,...,an, b1,...,bn−1 and c1,...,cn−1. In this case the recurrence relation becomes
![{\displaystyle K_{0}=1;\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/97b6655c7ff8e896284e5816072026e08b5b8e34)
![{\displaystyle K_{1}=a_{1};\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f81d97485328ae2ced76a36bba911a239ec5ea03)
![{\displaystyle K_{n}=a_{n}K_{n-1}-b_{n-1}c_{n-1}K_{n-2}.\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/aa67d775b985692ca0ac6f5a489fc19eb7917734)
Since br and cr enter into K only as a product brcr there is no loss of generality in assuming that the br are all equal to 1.
The generalized continuant is precisely the determinant of the tridiagonal matrix
![{\displaystyle {\begin{pmatrix}a_{1}&b_{1}&0&\ldots &0&0\\c_{1}&a_{2}&b_{2}&\ldots &0&0\\0&c_{2}&a_{3}&\ldots &0&0\\\vdots &\vdots &\vdots &\ddots &\vdots &\vdots \\0&0&0&\ldots &a_{n-1}&b_{n-1}\\0&0&0&\ldots &c_{n-1}&a_{n}\end{pmatrix}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/388540f612fd964042a590640ccdf0c4c2f31f84)
In Muir's book the generalized continuant is simply called continuant.