Dolgachev surface

In mathematics, Dolgachev surfaces are certain simply connected elliptic surfaces, introduced by Igor Dolgachev (1981). They can be used to give examples of an infinite family of homeomorphic simply connected compact 4-manifolds, no two of which are diffeomorphic.

Properties

[edit]

The blowup of the projective plane in 9 points can be realized as an elliptic fibration all of whose fibers are irreducible. A Dolgachev surface is given by applying logarithmic transformations of orders 2 and q to two smooth fibers for some .

The Dolgachev surfaces are simply connected, and the bilinear form on the second cohomology group is odd of signature (so it is the unimodular lattice ). The geometric genus is 0 and the Kodaira dimension is 1.

Simon Donaldson (1987) found the first examples of simply-connected homeomorphic but not diffeomorphic 4-manifolds and . More generally the surfaces and are always homeomorphic, but are not diffeomorphic unless .

Selman Akbulut (2012) showed that the Dolgachev surface has a handlebody decomposition without 1- and 3-handles.

References

[edit]
  • Akbulut, Selman (2012). "The Dolgachev surface. Disproving the Harer–Kas–Kirby conjecture". Commentarii Mathematici Helvetici. 87 (1): 187–241. arXiv:0805.1524. Bibcode:2008arXiv0805.1524A. doi:10.4171/CMH/252. MR 2874900.
  • Barth, Wolf P.; Hulek, Klaus; Peters, Chris A.M.; Van de Ven, Antonius (2004). Compact Complex Surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Vol. 4. Springer-Verlag, Berlin. doi:10.1007/978-3-642-96754-2. ISBN 978-3-540-00832-3. MR 2030225.
  • Dolgachev, Igor (2010), "Algebraic surfaces with ", Algebraic Surfaces, C.I.M.E. Summer Schools, vol. 76, Heidelberg: Springer, pp. 97–215, doi:10.1007/978-3-642-11087-0_3, MR 2757651
  • Donaldson, Simon K. (1987). "Irrationality and the h-cobordism conjecture". Journal of Differential Geometry. 26 (1): 141–168. doi:10.4310/jdg/1214441179. MR 0892034.