Method of calculating chiral anomalies
In physics , Fujikawa's method is a way of deriving the chiral anomaly in quantum field theory . It uses the correspondence between functional determinants and the partition function , effectively making use of the Atiyah–Singer index theorem .
Suppose given a Dirac field ψ {\displaystyle \psi } which transforms according to a representation ρ {\displaystyle \rho } of the compact Lie group G ; and we have a background connection form of taking values in the Lie algebra g . {\displaystyle {\mathfrak {g}}\,.} The Dirac operator (in Feynman slash notation ) is
D / = d e f ∂ / + i A / {\displaystyle D\!\!\!\!/\ {\stackrel {\mathrm {def} }{=}}\ \partial \!\!\!/+iA\!\!\!/} and the fermionic action is given by
∫ d d x ψ ¯ i D / ψ {\displaystyle \int d^{d}x\,{\overline {\psi }}iD\!\!\!\!/\psi } The partition function is
Z [ A ] = ∫ D ψ ¯ D ψ e − ∫ d d x ψ ¯ i D / ψ . {\displaystyle Z[A]=\int {\mathcal {D}}{\overline {\psi }}{\mathcal {D}}\psi \,e^{-\int d^{d}x\,{\overline {\psi }}iD\!\!\!/\,\psi }.} The axial symmetry transformation goes as
ψ → e i γ d + 1 α ( x ) ψ {\displaystyle \psi \to e^{i\gamma _{d+1}\alpha (x)}\psi \,} ψ ¯ → ψ ¯ e i γ d + 1 α ( x ) {\displaystyle {\overline {\psi }}\to {\overline {\psi }}e^{i\gamma _{d+1}\alpha (x)}} S → S + ∫ d d x α ( x ) ∂ μ ( ψ ¯ γ μ γ d + 1 ψ ) {\displaystyle S\to S+\int d^{d}x\,\alpha (x)\partial _{\mu }\left({\overline {\psi }}\gamma ^{\mu }\gamma _{d+1}\psi \right)} Classically, this implies that the chiral current, j d + 1 μ ≡ ψ ¯ γ μ γ d + 1 ψ {\displaystyle j_{d+1}^{\mu }\equiv {\overline {\psi }}\gamma ^{\mu }\gamma _{d+1}\psi } is conserved, 0 = ∂ μ j d + 1 μ {\displaystyle 0=\partial _{\mu }j_{d+1}^{\mu }} .
Quantum mechanically, the chiral current is not conserved: Jackiw discovered this due to the non-vanishing of a triangle diagram. Fujikawa reinterpreted this as a change in the partition function measure under a chiral transformation. To calculate a change in the measure under a chiral transformation, first consider the Dirac fermions in a basis of eigenvectors of the Dirac operator :
ψ = ∑ i ψ i a i , {\displaystyle \psi =\sum \limits _{i}\psi _{i}a^{i},} ψ ¯ = ∑ i ψ i b i , {\displaystyle {\overline {\psi }}=\sum \limits _{i}\psi _{i}b^{i},} where { a i , b i } {\displaystyle \{a^{i},b^{i}\}} are Grassmann valued coefficients, and { ψ i } {\displaystyle \{\psi _{i}\}} are eigenvectors of the Dirac operator :
D / ψ i = − λ i ψ i . {\displaystyle D\!\!\!\!/\psi _{i}=-\lambda _{i}\psi _{i}.} The eigenfunctions are taken to be orthonormal with respect to integration in d-dimensional space,
δ i j = ∫ d d x ( 2 π ) d ψ † j ( x ) ψ i ( x ) . {\displaystyle \delta _{i}^{j}=\int {\frac {d^{d}x}{(2\pi )^{d}}}\psi ^{\dagger j}(x)\psi _{i}(x).} The measure of the path integral is then defined to be:
D ψ D ψ ¯ = ∏ i d a i d b i {\displaystyle {\mathcal {D}}\psi {\mathcal {D}}{\overline {\psi }}=\prod \limits _{i}da^{i}db^{i}} Under an infinitesimal chiral transformation, write
ψ → ψ ′ = ( 1 + i α γ d + 1 ) ψ = ∑ i ψ i a ′ i , {\displaystyle \psi \to \psi ^{\prime }=(1+i\alpha \gamma _{d+1})\psi =\sum \limits _{i}\psi _{i}a^{\prime i},} ψ ¯ → ψ ¯ ′ = ψ ¯ ( 1 + i α γ d + 1 ) = ∑ i ψ i b ′ i . {\displaystyle {\overline {\psi }}\to {\overline {\psi }}^{\prime }={\overline {\psi }}(1+i\alpha \gamma _{d+1})=\sum \limits _{i}\psi _{i}b^{\prime i}.} The Jacobian of the transformation can now be calculated, using the orthonormality of the eigenvectors
C j i ≡ ( δ a δ a ′ ) j i = ∫ d d x ψ † i ( x ) [ 1 − i α ( x ) γ d + 1 ] ψ j ( x ) = δ j i − i ∫ d d x α ( x ) ψ † i ( x ) γ d + 1 ψ j ( x ) . {\displaystyle C_{j}^{i}\equiv \left({\frac {\delta a}{\delta a^{\prime }}}\right)_{j}^{i}=\int d^{d}x\,\psi ^{\dagger i}(x)[1-i\alpha (x)\gamma _{d+1}]\psi _{j}(x)=\delta _{j}^{i}\,-i\int d^{d}x\,\alpha (x)\psi ^{\dagger i}(x)\gamma _{d+1}\psi _{j}(x).} The transformation of the coefficients { b i } {\displaystyle \{b_{i}\}} are calculated in the same manner. Finally, the quantum measure changes as
D ψ D ψ ¯ = ∏ i d a i d b i = ∏ i d a ′ i d b ′ i det − 2 ( C j i ) , {\displaystyle {\mathcal {D}}\psi {\mathcal {D}}{\overline {\psi }}=\prod \limits _{i}da^{i}db^{i}=\prod \limits _{i}da^{\prime i}db^{\prime i}{\det }^{-2}(C_{j}^{i}),} where the Jacobian is the reciprocal of the determinant because the integration variables are Grassmannian, and the 2 appears because the a's and b's contribute equally. We can calculate the determinant by standard techniques:
det − 2 ( C j i ) = exp [ − 2 t r ln ( δ j i − i ∫ d d x α ( x ) ψ † i ( x ) γ d + 1 ψ j ( x ) ) ] = exp [ 2 i ∫ d d x α ( x ) ψ † i ( x ) γ d + 1 ψ i ( x ) ] {\displaystyle {\begin{aligned}{\det }^{-2}(C_{j}^{i})&=\exp \left[-2{\rm {tr}}\ln(\delta _{j}^{i}-i\int d^{d}x\,\alpha (x)\psi ^{\dagger i}(x)\gamma _{d+1}\psi _{j}(x))\right]\\&=\exp \left[2i\int d^{d}x\,\alpha (x)\psi ^{\dagger i}(x)\gamma _{d+1}\psi _{i}(x)\right]\end{aligned}}} to first order in α(x).
Specialising to the case where α is a constant, the Jacobian must be regularised because the integral is ill-defined as written. Fujikawa employed heat-kernel regularization , such that
− 2 t r ln C j i = 2 i lim M → ∞ α ∫ d d x ψ † i ( x ) γ d + 1 e − λ i 2 / M 2 ψ i ( x ) = 2 i lim M → ∞ α ∫ d d x ψ † i ( x ) γ d + 1 e D / 2 / M 2 ψ i ( x ) {\displaystyle {\begin{aligned}-2{\rm {tr}}\ln C_{j}^{i}&=2i\lim \limits _{M\to \infty }\alpha \int d^{d}x\,\psi ^{\dagger i}(x)\gamma _{d+1}e^{-\lambda _{i}^{2}/M^{2}}\psi _{i}(x)\\&=2i\lim \limits _{M\to \infty }\alpha \int d^{d}x\,\psi ^{\dagger i}(x)\gamma _{d+1}e^{{D\!\!\!/\,}^{2}/M^{2}}\psi _{i}(x)\end{aligned}}} ( D / 2 {\displaystyle {D\!\!\!\!/}^{2}} can be re-written as D 2 + 1 4 [ γ μ , γ ν ] F μ ν {\displaystyle D^{2}+{\tfrac {1}{4}}[\gamma ^{\mu },\gamma ^{\nu }]F_{\mu \nu }} , and the eigenfunctions can be expanded in a plane-wave basis)
= 2 i lim M → ∞ α ∫ d d x ∫ d d k ( 2 π ) d ∫ d d k ′ ( 2 π ) d ψ † i ( k ′ ) e i k ′ x γ d + 1 e − k 2 / M 2 + 1 / ( 4 M 2 ) [ γ μ , γ ν ] F μ ν e − i k x ψ i ( k ) {\displaystyle =2i\lim \limits _{M\to \infty }\alpha \int d^{d}x\int {\frac {d^{d}k}{(2\pi )^{d}}}\int {\frac {d^{d}k^{\prime }}{(2\pi )^{d}}}\psi ^{\dagger i}(k^{\prime })e^{ik^{\prime }x}\gamma _{d+1}e^{-k^{2}/M^{2}+1/(4M^{2})[\gamma ^{\mu },\gamma ^{\nu }]F_{\mu \nu }}e^{-ikx}\psi _{i}(k)} = − − 2 α ( 2 π ) d / 2 ( d 2 ) ! ( F ) d / 2 , {\displaystyle =-{\frac {-2\alpha }{(2\pi )^{d/2}({\frac {d}{2}})!}}(F)^{d/2},} after applying the completeness relation for the eigenvectors, performing the trace over γ-matrices, and taking the limit in M. The result is expressed in terms of the field strength 2-form, F ≡ 1 2 F μ ν d x μ ∧ d x ν . {\displaystyle F\equiv {\tfrac {1}{2}}F_{\mu \nu }\,dx^{\mu }\wedge dx^{\nu }\,.}
This result is equivalent to ( d 2 ) t h {\displaystyle ({\tfrac {d}{2}})^{\rm {th}}} Chern class of the g {\displaystyle {\mathfrak {g}}} -bundle over the d-dimensional base space, and gives the chiral anomaly , responsible for the non-conservation of the chiral current.
K. Fujikawa and H. Suzuki (May 2004). Path Integrals and Quantum Anomalies . Clarendon Press. ISBN 0-19-852913-9 . S. Weinberg (2001). The Quantum Theory of Fields . Volume II: Modern Applications .. Cambridge University Press. ISBN 0-521-55002-5 .