List of largest cosmic structures

Galaxy filaments form massive, thread-like structures on the order of millions of light-years. Computer simulation.

This is a list of the largest cosmic structures so far discovered. The unit of measurement used is the light-year (distance traveled by light in one Julian year; approximately 9.46 trillion kilometres).

This list includes superclusters, galaxy filaments and large quasar groups (LQGs). The structures are listed based on their longest dimension.

This list refers only to coupling of matter with defined limits, and not the coupling of matter in general (such as, for example, the cosmic microwave background, which fills the entire universe). All structures in this list are defined as to whether their presiding limits have been identified.

There are some reasons to be cautious about this list:

  • The Zone of Avoidance, or the part of the sky occupied by the Milky Way, blocks out light from several structures, making their limits imprecisely identified.
  • Some structures are too distant to be seen even with the most powerful telescopes.
  • Some structures have no defined limits, or endpoints. All structures are believed to be part of the cosmic web, which is a conclusive idea.[clarification needed] Most structures are overlapped by nearby galaxies, creating a problem of how to carefully define the structure's limit.
  • Interpreting the observational data requires assumptions about gravitational lensing, redshift, etc.

List of largest structures

[edit]

List of largest voids

[edit]

Voids are immense spaces between galaxy filaments and other large-scale structures. Technically they are not structures. They are vast spaces which contain very few or no galaxies. They are theorized to be caused by quantum fluctuations during the early formation of the universe.

A list of the largest voids so far discovered is below. Each is ranked according to its longest dimension.

See also

[edit]

References

[edit]
  1. ^ Horvath, Istvan; Bagoly, Zsolt; Hakkila, Jon; Tóth, L. Viktor (2014). "Anomalies in the GRB spatial distribution". Proceedings of Science: 78. arXiv:1507.05528. Bibcode:2014styd.confE..78H. doi:10.22323/1.233.0078.
  2. ^ Horvath, Istvan; Hakkila, Jon; Bagoly, Zsolt (2014). "Possible structure in the GRB sky distribution at redshift two". Astronomy & Astrophysics. 561: id.L12. arXiv:1401.0533. Bibcode:2014A&A...561L..12H. doi:10.1051/0004-6361/201323020. S2CID 24224684.
  3. ^ Horvath, I.; Hakkila, J.; Bagoly, Z. (2013). "The largest possible structure of the Universe, defined by Einstein in his Big Bang theory (1901)". 7th Huntsville Gamma-Ray Burst Symposium, GRB 2013: Paper 33 in EConf Proceedings C1304143. 1311: 1104. arXiv:1311.1104. Bibcode:2013arXiv1311.1104H.
  4. ^ Klotz, Irene (2013-11-19). "Universe's Largest Structure is a Cosmic Conundrum". discovery. Archived from the original on 2015-03-25. Retrieved 2013-11-22.
  5. ^ Christian, Sam (2020-07-11). "Re-examining the evidence of the Hercules–Corona Borealis Great Wall". Monthly Notices of the Royal Astronomical Society. 495 (4): 4291–4296. arXiv:2006.00141. doi:10.1093/mnras/staa1448. ISSN 0035-8711. S2CID 219177572.
  6. ^ Ukwatta, T. N.; Woźniak, P. R. (2016-01-01). "Investigation of redshift- and duration-dependent clustering of gamma-ray bursts". Monthly Notices of the Royal Astronomical Society. 455 (1): 703–711. arXiv:1507.07117. doi:10.1093/mnras/stv2350. ISSN 0035-8711.
  7. ^ Horvath, I.; Szecsi, D.; Hakkila, J.; Szabo, A.; Racz, I.I.; Toth, L.V.; Pinter, S.; Bagoly, Z. (2020-08-22). "The clustering of gamma-ray bursts in the Hercules-Corona Borealis Great Wall: the largest structure in the Universe?". Monthly Notices of the Royal Astronomical Society. 498 (2): 2544–2553. arXiv:2008.03679. doi:10.1093/mnras/staa2460. ISSN 0035-8711.
  8. ^ a b c Balazs, L. G.; Bagoly, Z.; Hakkila, J. E.; Horvath, I.; Kobori, J.; Racz, I. I.; Toth, L. V. (2015-08-05). "A giant ring-like structure at 0.78 < z < 0.86 displayed by GRBs". Monthly Notices of the Royal Astronomical Society. 452 (3): 2236–2246. arXiv:1507.00675. Bibcode:2015MNRAS.452.2236B. doi:10.1093/mnras/stv1421. S2CID 109936564.
  9. ^ Aron, Jacob (2013). "Largest structure challenges Einstein's smooth cosmos". New Scientist. 217 (2900): 13. Bibcode:2013NewSc.217...13A. doi:10.1016/S0262-4079(13)60143-8. Retrieved 14 January 2013.
  10. ^ "Astronomers discover the largest structure in the universe". Royal astronomical society. Archived from the original on 2013-01-14. Retrieved 2013-01-13.
  11. ^ Clowes, Roger; Harris, Kathryn A.; Raghunathan, Srinivasan; Campusano, Luis E.; Söchting, Ilona K.; Graham, Matthew J. (2013-01-11). "A structure in the early Universe at z ~ 1.3 that exceeds the homogeneity scale of the R-W concordance cosmology". Monthly Notices of the Royal Astronomical Society. 1211 (4): 6256. arXiv:1211.6256. Bibcode:2013MNRAS.429.2910C. doi:10.1093/mnras/sts497. S2CID 486490.
  12. ^ "Giant arc stretching-1.3 billion light-years across the cosmos shouldn't exist". Archived from the original on 2021-06-28. Retrieved 2021-06-16.
  13. ^ Pomarède, Daniel; et al. (10 July 2020). "Cosmicflows-3: The South Pole Wall". The Astrophysical Journal. 897 (2): 133. arXiv:2007.04414. Bibcode:2020ApJ...897..133P. doi:10.3847/1538-4357/ab9952. S2CID 220425419.
  14. ^ Pomerede, Daniel; et al. (January 2020). "The South Pole Wall". Harvard University. p. 453.01. Bibcode:2020AAS...23545301P.
  15. ^ "Astronomers map massive structure beyond Laniakea Supercluster". University of Hawaii. 10 July 2020. Retrieved 10 July 2020.
  16. ^ Overbye, Dennis (10 July 2020). "Beyond the Milky Way, a Galactic Wall – Astronomers have discovered a vast assemblage of galaxies hidden behind our own, in the "zone of avoidance"". The New York Times. Retrieved 10 July 2020.
  17. ^ Mann, Adam (10 July 2020). "Astronomers discover South Pole Wall, a gigantic structure stretching 1.4 billion light-years across". Live Science. Retrieved 10 July 2020.
  18. ^ Starr, Michelle (14 July 2020). "A Giant 'Wall' of Galaxies Has Been Found Stretching Across The Universe". ScienceAlert.com. Retrieved 19 July 2020.
  19. ^ a b Shimawaka, Rhythm; Okabe, Nobuhiro; Shirasaki, Masat; Tanaka, Masayuki (22 November 2022). "King Ghidorah Supercluster: Mapping the light and dark matter in a new supercluster at z = 0.55 using the subaru hyper suprime-cam". Monthly Notices of the Royal Astronomical Society: Letters. 519 (1): L45–L50. arXiv:2211.11970. Bibcode:2023MNRAS.519L..45S. doi:10.1093/mnrasl/slac150. ISSN 1745-3933. S2CID 253761264.
  20. ^ Nadathur, Seshadri (10 July 2018). "Seeing patterns in noise: Gigaparsec-scale 'structures' that do not violate homogeneity". Monthly Notices of the Royal Astronomical Society. 434 (1): 398–406. arXiv:1306.1700. Bibcode:2013MNRAS.434..398N. doi:10.1093/mnras/stt1028. S2CID 119220579.
  21. ^ Lietzen, H.; Tempel, E.; Liivamägi, L. J. (20 March 2016). "Discovery of a massive supercluster system at z ~ 0.47". Astronomy & Astrophysics. 588: L4. arXiv:1602.08498. Bibcode:2016A&A...588L...4L. doi:10.1051/0004-6361/201628261. S2CID 56126854.
  22. ^ "News | IUCAA". www.iucaa.in.
  23. ^ a b c d e f g h i j k Komberg, Boris V.; Kravtsov, Andrey V.; Lukash, Vladimir N. (1996). "The search and investigation of the Large Groups of Quasars". Monthly Notices of the Royal Astronomical Society. 282 (3): 2090. arXiv:astro-ph/9602090. Bibcode:1996MNRAS.282..713K. doi:10.1093/mnras/282.3.713. S2CID 14700144.
  24. ^ a b c d e f g h i j k l R. G. Clowes. "Large Quasar Groups – A Short Review". 'The New Era of Wide Field Astronomy', ASP Conference Series, Vol. 232. 2001; Astronomical Society of the Pacific; ISBN 1-58381-065-X; Bibcode:2001ASPC..232..108C.
  25. ^ Newman, Peter R. (1999). Large groups of quasars in an ultraviolet-excess survey (Thesis). University of Central Lancashire. Bibcode:1999PhDT..........N. doi:10.17030/uclan.thesis.00020658.
  26. ^ Sankhyayan, Shishir; Okabe, Joydeep; Tempel, Elmo; More, Surhud; Einasto, Maret; Dabhade, Pratik; Raychaudhury, Somak; Athreya, Ramana; Heinämäki, Pekka (13 November 2023). "Identification of Superclusters and Their Properties in the Sloan Digital Sky Survey Using the WHL Cluster Catalog". The Astrophysical Journal. 958 (1): 62. arXiv:2309.06251. Bibcode:2023ApJ...958...62S. doi:10.3847/1538-4357/acfaeb.
  27. ^ Webster, Adrian (May 1982). "The clustering of quasars from an objective-prism survey". Monthly Notices of the Royal Astronomical Society. 199 (3): 683–705. Bibcode:1982MNRAS.199..683W. doi:10.1093/mnras/199.3.683.
  28. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah Mao, Qingqing; Berlind, Andreas A.; Scherrer, Robert J.; Neyrinck, Mark C.; Scoccimarro, Román; Tinker, Jeremy L.; McBride, Cameron K.; Schneider, Donald P.; Pan, Kaike; Bizyaev, Dmitry; Malanushenko, Elena; Malanushenko, Viktor (2017). "A Cosmic Void Catalog of SDSS DR12 BOSS Galaxies". The Astrophysical Journal. 835 (2): 161. arXiv:1602.02771. Bibcode:2017ApJ...835..161M. doi:10.3847/1538-4357/835/2/161. S2CID 119098071.
  29. ^ Kenworthy, W. D'Arcy; Scolnic, Dan; Riess, Adam (2019-04-24). "The Local Perspective on the Hubble Tension: Local Structure Does Not Impact Measurement of the Hubble Constant". The Astrophysical Journal. 875 (2): 145. arXiv:1901.08681. Bibcode:2019ApJ...875..145K. doi:10.3847/1538-4357/ab0ebf. ISSN 1538-4357. S2CID 119095484.
  30. ^ Haslbauer, Moritz; Banik, Indranil; Kroupa, Pavel (October 23, 2020). "The KBC void and Hubble tension contradict $\Lambda$CDM on a Gpc scale $-$ Milgromian dynamics as a possible solution". Monthly Notices of the Royal Astronomical Society. 499 (2): 2845–2883. arXiv:2009.11292. Bibcode:2020MNRAS.499.2845H. doi:10.1093/mnras/staa2348.
  31. ^ Bahcall, N. A.; Soneira, R. M. (1982) "An approximately 300 MPC void of rich clusters of galaxies" (PDF) Astrophysical Journal, Part 1, vol. 262, Nov. 15, 1982, p. 419-423. Bibcode:1982ApJ...262..419B doi:10.1086/160436
  32. ^ a b Einasto, Jaan; Einasto, Maret; Gramann, Mirt (1989) "Structure and formation of superclusters. IX – Self-similarity of voids" (PDF). Royal Astronomical Society, Monthly Notices (ISSN 0035-8711), vol. 238, May 1, 1989, pp. 155–177. Bibcode:1989MNRAS.238..155E.
  33. ^ S. A. Pustilnik (SAO), D. Engels (Hamburg), A. Y. Kniazev (ESO, SAO), A. G. Pramskij, A. V. Ugryumov (SAO), H.-J. Hagen (Hamburg) (2005). ["HS 2134+0400 – new very metal-poor galaxy, a representative of void population?"]. arXiv:astro-ph/0508255v1. Bibcode:2006AstL...32..228P doi:10.1134/S1063773706040025.