Numerical range
In the mathematical field of linear algebra and convex analysis, the numerical range or field of values of a complex matrix A is the set
where denotes the conjugate transpose of the vector . The numerical range includes, in particular, the diagonal entries of the matrix (obtained by choosing x equal to the unit vectors along the coordinate axes) and the eigenvalues of the matrix (obtained by choosing x equal to the eigenvectors).
In engineering, numerical ranges are used as a rough estimate of eigenvalues of A. Recently, generalizations of the numerical range are used to study quantum computing.
A related concept is the numerical radius, which is the largest absolute value of the numbers in the numerical range, i.e.
Properties
[edit]- The numerical range is the range of the Rayleigh quotient.
- (Hausdorff–Toeplitz theorem) The numerical range is convex and compact.
- for all square matrix and complex numbers and . Here is the identity matrix.
- is a subset of the closed right half-plane if and only if is positive semidefinite.
- The numerical range is the only function on the set of square matrices that satisfies (2), (3) and (4).
- (Sub-additive) , where the sum on the right-hand side denotes a sumset.
- contains all the eigenvalues of .
- The numerical range of a matrix is a filled ellipse.
- is a real line segment if and only if is a Hermitian matrix with its smallest and the largest eigenvalues being and .
- If is a normal matrix then is the convex hull of its eigenvalues.
- If is a sharp point on the boundary of , then is a normal eigenvalue of .
- is a norm on the space of matrices.
- , where denotes the operator norm.[1][2][3][4]
Generalisations
[edit]- C-numerical range
- Higher-rank numerical range
- Joint numerical range
- Product numerical range
- Polynomial numerical hull
See also
[edit]Bibliography
[edit]- Choi, M.D.; Kribs, D.W.; Życzkowski (2006), "Quantum error correcting codes from the compression formalism", Rep. Math. Phys., 58 (1): 77–91, arXiv:quant-ph/0511101, Bibcode:2006RpMP...58...77C, doi:10.1016/S0034-4877(06)80041-8, S2CID 119427312.
- Dirr, G.; Helmkel, U.; Kleinsteuber, M.; Schulte-Herbrüggen, Th. (2006), "A new type of C-numerical range arising in quantum computing", Proc. Appl. Math. Mech., 6: 711–712, doi:10.1002/pamm.200610336.
- Bonsall, F.F.; Duncan, J. (1971), Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, Cambridge University Press, ISBN 978-0-521-07988-4.
- Bonsall, F.F.; Duncan, J. (1971), Numerical Ranges II, Cambridge University Press, ISBN 978-0-521-20227-5.
- Horn, Roger A.; Johnson, Charles R. (1991), Topics in Matrix Analysis, Cambridge University Press, Chapter 1, ISBN 978-0-521-46713-1.
- Horn, Roger A.; Johnson, Charles R. (1990), Matrix Analysis, Cambridge University Press, Ch. 5.7, ex. 21, ISBN 0-521-30586-1
- Li, C.K. (1996), "A simple proof of the elliptical range theorem", Proc. Am. Math. Soc., 124 (7): 1985, doi:10.1090/S0002-9939-96-03307-2.
- Keeler, Dennis S.; Rodman, Leiba; Spitkovsky, Ilya M. (1997), "The numerical range of 3 × 3 matrices", Linear Algebra and Its Applications, 252 (1–3): 115, doi:10.1016/0024-3795(95)00674-5.
- "Functional Characterizations of the Field of Values and the Convex Hull of the Spectrum", Charles R. Johnson, Proceedings of the American Mathematical Society, 61(2):201-204, Dec 1976.
References
[edit]- ^ ""well-known" inequality for numerical radius of an operator". StackExchange.
- ^ "Upper bound for norm of Hilbert space operator". StackExchange.
- ^ "Inequalities for numerical radius of complex Hilbert space operator". StackExchange.
- ^ Hilary Priestley. "B4b hilbert spaces: extended synopses 9. Spectral theory" (PDF).
In fact, ‖T‖ = max(−mT , MT) = wT. This fails for non-self-adjoint operators, but wT ≤ ‖T‖ ≤ 2wT in the complex case.