Limes (matematika)
Ovaj članak ili neki od njegovih odlomaka nije dovoljno potkrijepljen izvorima (literatura, veb-sajtovi ili drugi izvori). |
U matematici, granična vrijednost ili limes se koristi za opisivanje ponašanja funkcije kako se njen argument "približava" nekoj tački, ili kako argument postaje proizvoljno velik; ili ponašanja elemenata niza kako njihov indeks raste u beskonačnost. Granične vrijednosti se koriste u kalkulusu i drugim granama matematičke analize kako bi se definisala derivacija i neprekidnost.
Granična vrijednost funkcije
[uredi | uredi izvor]Pretpostavimo da je ƒ(x) funkcija realne vrijednosti i da je c realan broj. Izraz:
znači da se ƒ(x) proizvoljno može približiti broju L ako je x dovoljno blizu broja c. U ovom slučaju, možemo reći da je "granična vrijednost funkcije ƒ od x, kada x teži u c, broj L".
Formalna definicija
[uredi | uredi izvor]Karl Weierstrass formalno je definisao graničnu vrijednost kako slijedi:
Neka f bude funkcija definisana na otvorenom intervalu sadržavajući c (osim u c) i neka L bude realan broj.
znači da
- za svaki realan broj ε > 0 postoji realan broj δ > 0 takav da za svako x sa 0 < |x − c| < δ, imamo |f(x) − L| < ε.
ili, simbolički,
Granična vrijednost niza
[uredi | uredi izvor]Razmotrimo niz: 1,79; 1,799; 1,7999; ... Možemo primijetiti da se brojevi "približavaju" broju 1,8, što predstavlja graničnu vrijednost niza.
formalno, pretpostavimo da je x1, x2, ... niz realnih brojeva. Kažemo da je realan broj L granična vrijednost ovog niza i to pišemo kao
što riječima znači
- Za svaki realan broj ε > 0, postoji prirodan broj n0 takav da za svako n > n0, vrijedi |xn − L| < ε.
Korisni identiteti
[uredi | uredi izvor]- , gdje je S skalarni množilac.
- , gdje je b konstanta.
Sljedeća pravila važe samo ako granične vrijednosti sa desne strane postoje i ako su konačne.
- , ako limes u nazivniku nije jednak nuli
Ako je bilo koja od graničnih vrijednosti sa desne strane nedefinisana ili beskonačna, ova pravila ne moraju vrijediti.
Na primjer, , ali je nedefinisan.
Veoma važne granične vrijednosti
[uredi | uredi izvor]L'Hôpitalovo pravilo
[uredi | uredi izvor]Ovo pravilo koristi derivacije i ima uslov za primjenu. (Može se koristiti samo na graničnim vrijednostima oblika 0/0 ili ±∞/±∞. Ostali neodređeni oblici zahtijevaju algebarske manipulacije.)
Na primjer:
Sume i integrali
[uredi | uredi izvor]Kraći način zapisivanja granične vrijednosti je .
Kraći naćin zapisivanja granične vrijednosti je .
Kraći naćin zapisivanja granične vrijednosti je .