Adjungierte Matrix

Van Wikipedia, de gratis encyclopedie

Die adjungierte Matrix (nicht zu verwechseln mit der Adjunkten), hermitesch transponierte Matrix oder transponiert-konjugierte Matrix ist in der Mathematik diejenige Matrix, die durch Transponierung und Konjugation einer gegebenen komplexen Matrix entsteht. Anschaulich ergibt sich die adjungierte Matrix durch Spiegelung der Ausgangsmatrix an ihrer Hauptdiagonale und anschließende komplexe Konjugation aller Matrixeinträge. Bei Matrizen mit Einträgen aus den reellen Zahlen entspricht sie der transponierten Matrix. Die Umwandlung einer Matrix in ihre adjungierte Matrix wird Adjungierung der Matrix genannt.

Die Adjungierungsabbildung, die einer Matrix ihre Adjungierte zuordnet, ist stets bijektiv, konjugiert linear und selbstinvers. Bezüglich der Matrizenaddition stellt sie einen Isomorphismus dar, bezüglich der Matrizenmultiplikation hingegen einen Antiisomorphismus, das heißt, die Reihenfolge bei der Multiplikation von Matrizen kehrt sich nach Adjungierung um. Viele Kenngrößen adjungierter Matrizen, wie Spur, Determinante und Eigenwerte, sind gerade die komplex Konjugierten der jeweiligen Kenngrößen der Ausgangsmatrizen.

In der linearen Algebra wird die adjungierte Matrix unter anderem zur Charakterisierung spezieller Klassen von Matrizen und bei Matrixzerlegungen eingesetzt. Die adjungierte Matrix ist auch die Abbildungsmatrix der adjungierten Abbildung zwischen zwei endlichdimensionalen komplexen Skalarprodukträumen bezüglich der jeweiligen Orthonormalbasen.

Definition[Bearbeiten | Quelltext bearbeiten]

Ist eine komplexe Matrix,

dann ist die (bezüglich des Standardskalarprodukts) adjungierte Matrix definiert als

,

wobei die transponierte Matrix und die konjugierte Matrix von sind. Die adjungierte Matrix ergibt sich also dadurch, dass die Rollen von Zeilen und Spalten der Ausgangsmatrix vertauscht werden und alle Einträge komplex konjugiert werden. Die Reihenfolge, in der transponiert und konjugiert wird, ist dabei unerheblich.

Haben wir auf das Skalarprodukt gegeben durch , und auf das Skalarprodukt gegeben durch , mit positiv definiten, hermitischen Matrizen

so ist die adjungierte Matrix zu gegeben durch

.

Notation[Bearbeiten | Quelltext bearbeiten]

Das hochgestellte in der Notation steht für den Nachnamen des französischen Mathematikers Charles Hermite. Hermite beschäftigte sich im Jahr 1855 mit Matrizen, die gleich ihrer Adjungierten sind, sogenannten hermiteschen Matrizen, und zeigte, dass solche Matrizen viele Eigenschaften mit reellen symmetrischen Matrizen gemeinsam haben.[1]

Andere Schreibweisen für die adjungierte Matrix sind , , und . Die Notation ist jedoch nicht eindeutig, da sie auch für die Adjunkte verwendet wird. Mit wird gelegentlich auch die konjugierte Matrix bezeichnet und steht auch für die Pseudoinverse. Die Notation wird vor allem in der Physik, insbesondere in der Quantenmechanik, verwendet.

Beispiele[Bearbeiten | Quelltext bearbeiten]

Durch Adjungierung einer -Matrix (eines Zeilenvektors) entsteht eine -Matrix (ein Spaltenvektor) und umgekehrt, jeweils mit komplex konjugierten Einträgen:

Durch Adjungierung einer -Matrix entsteht eine -Matrix, bei der die erste Zeile der ersten Spalte der Ausgangsmatrix und die zweite Zeile der zweiten Spalte der Ausgangsmatrix jeweils nach komplexer Konjugation entspricht:

Für eine komplexe Matrix mit ausschließlich reellen Einträgen ist die Adjungierte gerade die Transponierte.

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Die nachfolgenden Eigenschaften sind direkte Folgerungen aus den entsprechenden Eigenschaften transponierter und konjugierter Matrizen.

Summe[Bearbeiten | Quelltext bearbeiten]

Für die Adjungierte der Summe zweier Matrizen gleicher Größe gilt

.

Allgemein ergibt sich die Summe von Matrizen gleicher Größe zu

.

Die Adjungierte einer Summe von Matrizen ist demnach gleich der Summe der Adjungierten.

Skalarmultiplikation[Bearbeiten | Quelltext bearbeiten]

Für die Adjungierte des Produkts einer Matrix mit einem Skalar gilt

.

Die Adjungierte des Produkts einer Matrix mit einem Skalar ist also gleich dem Produkt des konjugierten Skalars mit der adjungierten Matrix.

Zweifache Adjungierung[Bearbeiten | Quelltext bearbeiten]

Für die Adjungierte der Adjungierten einer Matrix gilt

.

Durch zweifache Adjungierung ergibt sich demnach stets wieder die Ausgangsmatrix.

Produkt[Bearbeiten | Quelltext bearbeiten]

Für die Adjungierte des Produkts einer Matrix mit einer Matrix gilt

.

Allgemein ergibt sich für das Produkt von Matrizen passender Größe

.

Die Adjungierte eines Produkts von Matrizen ist demnach gleich dem Produkt der Adjungierten, jedoch in umgekehrter Reihenfolge.

Inverse[Bearbeiten | Quelltext bearbeiten]

Die Adjungierte einer regulären Matrix ist ebenfalls stets regulär. Für die Adjungierte der Inversen einer regulären Matrix gilt dabei

.

Die Adjungierte der inversen Matrix ist demnach gleich der Inversen der adjungierten Matrix. Diese Matrix wird gelegentlich auch mit bezeichnet.[2]

Exponential und Logarithmus[Bearbeiten | Quelltext bearbeiten]

Für das Matrixexponential der Adjungierten einer quadratischen Matrix gilt

.

Entsprechend gilt für den Matrixlogarithmus der Adjungierten einer regulären komplexen Matrix

.

Adjungierungsabbildung[Bearbeiten | Quelltext bearbeiten]

Die Abbildung

,

die einer Matrix ihre Adjungierte zuordnet, besitzt aufgrund der vorstehenden Gesetzmäßigkeiten die folgenden Eigenschaften:

Blockmatrizen[Bearbeiten | Quelltext bearbeiten]

Die Adjungierte einer Blockmatrix mit Zeilen- und Spaltenpartitionen ist durch

gegeben. Sie entsteht durch Spiegelung aller Blöcke an der Hauptdiagonale und nachfolgende Adjungierung jedes Blocks.

Kenngrößen[Bearbeiten | Quelltext bearbeiten]

Rang[Bearbeiten | Quelltext bearbeiten]

Für eine Matrix ist der Rang der adjungierten Matrix gleich dem der Ausgangsmatrix, das heißt

.

Das Bild der Abbildung wird dabei von den Spaltenvektoren von aufgespannt, während das Bild der Abbildung von den Zeilenvektoren von aufgespannt wird. Die Dimensionen dieser beiden Bilder stimmen stets überein.

Spur[Bearbeiten | Quelltext bearbeiten]

Für eine quadratische Matrix ist die Spur (die Summe der Hauptdiagonalelemente) der adjungierten Matrix gleich der konjugierten Spur der Ausgangsmatrix, das heißt

,

denn die Diagonalelemente der adjungierten Matrix stimmen mit denen der Ausgangsmatrix bis auf komplexe Konjugation überein.

Determinante[Bearbeiten | Quelltext bearbeiten]

Für eine quadratische Matrix ist die Determinante der adjungierten Matrix gleich der konjugierten Determinante der Ausgangsmatrix, das heißt

.

Dies folgt aus der Leibniz-Formel für Determinanten über

,

wobei die Summe über alle Permutationen der symmetrischen Gruppe läuft und das Vorzeichen der Permutation bezeichnet.

Spektrum[Bearbeiten | Quelltext bearbeiten]

Für eine quadratische Matrix stimmt aufgrund der vorstehenden Determinantenformel auch das charakteristische Polynom der adjungierten Matrix mit dem der Ausgangsmatrix bis auf komplexe Konjugation überein, denn

.

Die Eigenwerte von sind demnach gerade die komplex Konjugierten der Eigenwerte von .

Normen[Bearbeiten | Quelltext bearbeiten]

Die euklidische Norm eines komplexen Vektors ist durch

gegeben. Für die Frobeniusnorm und die Spektralnorm der Adjungierten einer Matrix gilt

  und   .

Die Zeilensummen- und die Spaltensummennorm der Adjungierten und der Ausgangsmatrix stehen folgendermaßen in Beziehung:

  und   .

Skalarprodukte[Bearbeiten | Quelltext bearbeiten]

Das Standardskalarprodukt zweier komplexer Vektoren ist durch

gegeben. Bezüglich des Standardskalarprodukts weisen eine Matrix und ihre Adjungierte die Verschiebungseigenschaft

für alle Vektoren und auf. Hierbei steht auf der linken Seite das Standardskalarprodukt im und auf der rechten Seite das Standardskalarprodukt im . Für das Frobenius-Skalarprodukt zweier Matrizen gilt

,

da Matrizen unter der Spur zyklisch vertauschbar sind.

Verwendung[Bearbeiten | Quelltext bearbeiten]

Spezielle Matrizen[Bearbeiten | Quelltext bearbeiten]

Die adjungierte Matrix wird in der linearen Algebra unter anderem bei folgenden Definitionen verwendet:

  • Eine hermitesche Matrix ist eine komplexe quadratische Matrix, die gleich ihrer Adjungierten ist, das heißt . Solche Matrizen werden auch als selbstadjungiert bezeichnet.
  • Eine schiefhermitesche Matrix ist eine komplexe quadratische Matrix, die gleich ihrer negativen Adjungierten ist, das heißt .
  • Eine unitäre Matrix ist eine komplexe quadratische Matrix, deren Adjungierte gleich ihrer Inversen ist, das heißt .
  • Eine (komplexe) normale Matrix ist eine komplexe quadratische Matrix, die mit ihrer Adjungierten kommutiert, das heißt .
  • Für eine beliebige komplexe Matrix sind die beiden Gram-Matrizen und stets hermitesch und positiv semidefinit.
  • Eine komplexe Matrix besitzt genau dann ausschließlich reelle Einträge, wenn ihre Adjungierte gleich ihrer Transponierten ist, das heißt wenn gilt.

Matrixzerlegungen[Bearbeiten | Quelltext bearbeiten]

Die adjungierte Matrix wird auch bei der Schur-Zerlegung einer quadratischen Matrix

in eine unitäre Matrix , eine obere Dreiecksmatrix und die Adjungierte von sowie bei der Singulärwertzerlegung einer Matrix

in eine unitäre Matrix , eine reelle Diagonalmatrix und die Adjungierte einer unitären Matrix verwendet.

Adjungierte Abbildungen[Bearbeiten | Quelltext bearbeiten]

Sind und endlichdimensionale komplexe Skalarprodukträume, dann wird die zu einer gegebenen linearen Abbildung zugehörige adjungierte Abbildung durch die Beziehung

für alle und charakterisiert. Ist weiter eine Orthonormalbasis von , eine Orthonormalbasis von und die Abbildungsmatrix von bezüglich dieser Basen, dann ist die Abbildungsmatrix von bezüglich dieser Basen durch

gegeben. Die Abbildungsmatrix der adjungierten Abbildung ist also gerade die Adjungierte der Abbildungsmatrix der Ausgangsabbildung. In der Funktionalanalysis wird dieses Konzept auf adjungierte Operatoren zwischen unendlichdimensionalen Hilberträumen verallgemeinert.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Charles Hermite: Remarque sur un théorème de M. Cauchy. In: Comptes Rendus des Séances de l'Académie des Sciences. Nr. 41. Paris 1855, S. 181–183.
  2. G. W. Stewart: Matrix Algorithms. Volume 1: Basic Decompositions. SIAM, 1998, S. 38.