De-Rham-Kohomologie

Van Wikipedia, de gratis encyclopedie

Die De-Rham-Kohomologie (nach Georges de Rham) ist eine mathematische Konstruktion aus der Algebraischen Topologie, welche die Kohomologie für glatte Mannigfaltigkeiten entwickelt, also für Kurven, Flächen und andere geometrische Objekte, die aus der Sicht der Analysis lokal aussehen wie ein euklidischer Raum. Diese Kohomologie benutzt den Satz von Stokes in seiner verallgemeinerten Form, der den Fundamentalsatz der Analysis erweitert und eine Verbindungslinie von der Differentialgeometrie zur Algebraischen Topologie eröffnet. Das Analogon der De-Rham-Kohomologie für komplexe Mannigfaltigkeiten ist die Dolbeault-Kohomologie.

De-Rham-Komplex[Bearbeiten | Quelltext bearbeiten]

Definition[Bearbeiten | Quelltext bearbeiten]

Sei eine glatte Mannigfaltigkeit und die Menge der p-Formen auf . Der De-Rham-Komplex ist der Kokettenkomplex

.

Die Abbildungen sind durch die Cartan-Ableitung gegeben.

De-Rham-Komplex im dreidimensionalen Raum[Bearbeiten | Quelltext bearbeiten]

Wählt man den als zugrundeliegende Mannigfaltigkeit so hat der De-Rham-Komplex eine besondere Form. In diesem Fall entsprechen die Cartan-Ableitungen den, aus der Vektoranalysis bekannten, Differentialoperatoren Gradient , Divergenz und Rotation . Konkret heißt es, dass das Diagramm

kommutiert, man also das gleiche Ergebnis erhält egal welchen Pfeilen man folgt. Die Abbildungen und sind Diffeomorphismen. So ist der Sharp-Isomorphismus und der Hodge-Stern-Operator.

Definition der De-Rham-Kohomologie[Bearbeiten | Quelltext bearbeiten]

Sei eine glatte Mannigfaltigkeit. Die -te De-Rham-Kohomologie-Gruppe ist definiert als die -te Kohomologie-Gruppe des De-Rham-Komplexes. Insbesondere gilt für

Geschichte[Bearbeiten | Quelltext bearbeiten]

In seiner Pariser Dissertation (1931) bewies Georges de Rham mit seinem Satz eine Vermutung von Élie Cartan, die ihrerseits auf Überlegungen von Henri Poincaré zurückging. Da die Kohomologie eines topologischen Raumes erst einige Jahre später thematisiert wurde, arbeitete er tatsächlich mit der Homologie und dem (aufgrund des Satzes von Stokes) dualen Komplex der n-Ketten.

Homotopieinvarianz[Bearbeiten | Quelltext bearbeiten]

Seien und zwei homotopieäquivalente glatte Mannigfaltigkeiten, dann gilt für jedes

.

Da also zwei homotope, glatte Mannigfaltigkeiten bis auf Isomorphie die gleiche De-Rham-Kohomologie besitzen, ist diese Kohomologie eine topologische Invariante einer glatten Mannigfaltigkeit. Das ist bemerkenswert, da bei der Definition der De-Rham-Gruppe die differenzierbare Struktur der Mannigfaltigkeit eine wichtige Rolle spielt. Man hat also erstmal keinen Grund anzunehmen, dass eine topologische Mannigfaltigkeit mit unterschiedlichen differenzierbaren Strukturen dieselben De-Rham-Gruppen hat.

Satz von de Rham[Bearbeiten | Quelltext bearbeiten]

Die zentrale Aussage in der Theorie der De-Rham-Kohomologie wird Satz von de Rham genannt. Er besagt, dass die De-Rham-Kohomologie glatter Mannigfaltigkeiten natürlich isomorph zur singulären Kohomologie mit Koeffizienten in den reellen Zahlen ist. Mit wird die singuläre Homologie bezeichnet. Es gilt also

Sei ein Element der p-ten singulären Homologiegruppe. Dann wird der Isomorphismus durch die Abbildung

beschrieben, wobei ein glatter Zykel aus der Homologieklasse ist. Dabei wurde mit identifiziert (siehe auch Universelles Koeffiziententheorem). Diese Abbildung heißt De-Rham-Homomorphismus oder De-Rham-Isomorphismus.[1]

Beispiele einiger De-Rham-Gruppen[Bearbeiten | Quelltext bearbeiten]

Das Berechnen der De-Rham-Gruppen ist oftmals schwierig, darum folgen nun wenige Beispiele. Es sei immer vorausgesetzt, dass die betrachteten Mannigfaltigkeiten glatt sind.

  • Sei eine zusammenhängende Mannigfaltigkeit, dann ist gleich der Menge der konstanten Funktionen und hat Dimension eins.
  • Sei eine null-dimensionale Mannigfaltigkeit, dann ist die Dimension von gleich der Mächtigkeit von und alle anderen Kohomologiegruppen verschwinden.
  • Sei ein offenes Sterngebiet, dann gilt für alle . Dies ist das Lemma von Poincaré, welches besagt, dass auf einem Sterngebiet jede geschlossene Differentialform, dω=0, sogar exakt ist (das heißt, es gibt eine „Potentialform“ χ, so dass ω=dχ gilt).
  • Insbesondere gilt , da der euklidische Raum ein Sterngebiet ist.
  • Sei eine einfach-zusammenhängende Mannigfaltigkeit, dann gilt .

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Raoul Bott, Loring W. Tu: Differential forms in algebraic topology. Springer, New York NY u. a. 1982, ISBN 0-387-90613-4 (Graduate Texts in Mathematics 82).
  • Klaus Jänich: Vektoranalysis. 5. Auflage. Springer Verlag, Berlin u. a. 2005, ISBN 3-540-23741-0 (Springer-Lehrbuch).
  • Georges de Rham: Sur l'analysis situs des variétés à n dimensions. In: Journal de Mathématiques pures et appliquées. 10, 1931, ISSN 0021-7824, S. 115–200, online.
  • André Weil: Sur les théorèmes de de Rham. In: Commentarii mathematici Helvetici. 26, 1952, S. 119–145, online, (Wiederabdruck in: André Weil: Œuvres Scientifiques. Band 2: 1951–1964. Reprinted edition. Springer, Berlin u. a. 2009, ISBN 978-3-540-87735-6, S. 17–43).

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. John M. Lee: Introduction to Smooth Manifolds (= Graduate Texts in Mathematics 218). Springer-Verlag, New York NY u. a. 2003, ISBN 0-387-95448-1, S. 298.