Formelsammlung Trigonometrie

Van Wikipedia, de gratis encyclopedie

Dreieckberechnung[Bearbeiten | Quelltext bearbeiten]

Ein Dreieck mit den üblichen Bezeichnungen
Ein Dreieck mit den üblichen Bezeichnungen

Die folgende Liste enthält die meisten bekannten Formeln aus der Trigonometrie in der Ebene. Die meisten dieser Beziehungen verwenden trigonometrische Funktionen.

Dabei werden die folgenden Bezeichnungen verwendet: Das Dreieck habe die Seiten , und , die Winkel , und bei den Ecken , und . Ferner seien der Umkreisradius, der Inkreisradius und , und die Ankreisradien (und zwar die Radien der Ankreise, die den Ecken , bzw. gegenüberliegen) des Dreiecks . Die Variable steht für den halben Umfang des Dreiecks :

.

Schließlich wird die Fläche des Dreiecks mit bezeichnet. Alle anderen Bezeichnungen werden jeweils in den entsprechenden Abschnitten, in denen sie vorkommen, erläutert.

Es ist zu beachten, dass hier die Bezeichnungen für den Umkreisradius , den Inkreisradius und die drei Ankreisradien , , benutzt werden. Oft werden davon abweichend für dieselben Größen auch die Bezeichnungen , , , , verwendet.

Winkelsumme[Bearbeiten | Quelltext bearbeiten]

Sinussatz[Bearbeiten | Quelltext bearbeiten]

Formel 1:

Formel 2:

wenn

wenn

wenn

Kosinussatz[Bearbeiten | Quelltext bearbeiten]

Formel 1:

Formel 2:

wenn

wenn

wenn

(Satz des Pythagoras)

Projektionssatz[Bearbeiten | Quelltext bearbeiten]

Die Mollweideschen Formeln[Bearbeiten | Quelltext bearbeiten]

Tangenssatz[Bearbeiten | Quelltext bearbeiten]

Formel 1:

Analoge Formeln gelten für und :

Wegen bleibt eine dieser Formel gültig, wenn sowohl die Seiten als auch die zugehörigen Winkel vertauscht werden, also etwa:

Formel 2:

wenn

wenn

wenn

Formeln mit dem halben Umfang[Bearbeiten | Quelltext bearbeiten]

Im Folgenden bedeutet immer die Hälfte des Umfangs des Dreiecks , also .

Flächeninhalt und Umkreisradius[Bearbeiten | Quelltext bearbeiten]

Der Flächeninhalt des Dreiecks wird hier mit bezeichnet (nicht, wie heute üblich, mit , um eine Verwechselung mit der Dreiecksecke auszuschließen):

Heronsche Formel:

Weitere Flächenformeln:

, wobei , und die Längen der von , bzw. ausgehenden Höhen des Dreiecks sind.
, mit

Erweiterter Sinussatz:

In- und Ankreisradien[Bearbeiten | Quelltext bearbeiten]

In diesem Abschnitt werden Formeln aufgelistet, in denen der Inkreisradius und die Ankreisradien , und des Dreiecks vorkommen.

[1]

Wichtige Ungleichung: ; Gleichheit tritt nur dann ein, wenn Dreieck gleichseitig ist.

Die Ankreise sind gleichberechtigt: Jede Formel für gilt in analoger Form für und .

Höhen[Bearbeiten | Quelltext bearbeiten]

Die Längen der von , bzw. ausgehenden Höhen des Dreiecks werden mit , und bezeichnet.

Hat das Dreieck einen rechten Winkel bei (ist also ), dann gilt

Seitenhalbierende[Bearbeiten | Quelltext bearbeiten]

Die Längen der von , bzw. ausgehenden Seitenhalbierenden des Dreiecks werden , und genannt.

Winkelhalbierende[Bearbeiten | Quelltext bearbeiten]

Wir bezeichnen mit , und die Längen der von , bzw. ausgehenden Winkelhalbierenden im Dreieck .

Allgemeine Trigonometrie in der Ebene[Bearbeiten | Quelltext bearbeiten]

Die trigonometrischen Funktionen am Einheitskreis:

Periodizität[Bearbeiten | Quelltext bearbeiten]

Gegenseitige Darstellung[Bearbeiten | Quelltext bearbeiten]

Die trigonometrischen Funktionen lassen sich ineinander umwandeln oder gegenseitig darstellen. Es gelten folgende Zusammenhänge:

     („Trigonometrischer Pythagoras“)

(Siehe auch den Abschnitt Phasenverschiebungen.)

Mittels dieser Gleichungen lassen sich die drei vorkommenden Funktionen durch eine der beiden anderen darstellen:

für
für
für
für
für
für
für
für
für
für
für
für

Vorzeichen der Winkelfunktionen[Bearbeiten | Quelltext bearbeiten]

Die Vorzeichen von , und stimmen überein mit denen ihrer Kehrwertfunktionen , bzw. .

Wichtige Funktionswerte[Bearbeiten | Quelltext bearbeiten]

Darstellung wichtiger Funktionswerte von Kosinus (1. Klammerwert) und Sinus (2. Klammerwert) auf dem Einheitskreis
(rad)

Mit Hilfe der Additionstheoreme sind noch viele weitere Werte durch algebraische Ausdrücke (ggfs. mit verschachtelten Quadratwurzeln) darstellbar, insbesondere alle ganzzahligen Vielfachen von .[2]

Symmetrien[Bearbeiten | Quelltext bearbeiten]

Die trigonometrischen Funktionen haben einfache Symmetrien:

Phasenverschiebungen[Bearbeiten | Quelltext bearbeiten]

Rückführung auf spitze Winkel[Bearbeiten | Quelltext bearbeiten]

Darstellung durch den Tangens des halben Winkels[Bearbeiten | Quelltext bearbeiten]

Mit der Bezeichnung gelten die folgenden Beziehungen für beliebiges

 
 
 

Additionstheoreme[Bearbeiten | Quelltext bearbeiten]

Figur 1
Figur 2

Für Sinus und Kosinus lassen sich die Additionstheoreme aus der Verkettung zweier Drehungen um den Winkel bzw. herleiten. Das ist elementargeometrisch möglich; sehr viel einfacher ist das koordinatenweise Ablesen der Formeln aus dem Produkt zweier Drehmatrizen der Ebene . Alternativ folgen die Additionstheoreme aus der Anwendung der Eulerschen Formel auf die Beziehung . Die Ergebnisse für das Doppelvorzeichen ergeben sich durch Anwendung der Symmetrien.[3]

[4]
[4]

Geometrische Herleitungen sind in Figur 1 und Figur 2 für Winkel und zwischen 0° und 90° veranschaulicht.[5]

Zu Figur 1:

Zu Figur 2:

Durch Erweiterung mit bzw. und Vereinfachung des Doppelbruchs:

Für folgen hieraus die Doppelwinkelfunktionen, für die Phasenverschiebungen.

Additionstheoreme für Arkusfunktionen[Bearbeiten | Quelltext bearbeiten]

Für die Arkusfunktionen gelten folgende Additionstheoreme[6]

Summanden Summenformel Gültigkeitsbereich
oder
und und
und und
oder
und und
und und