K-Theorie

Van Wikipedia, de gratis encyclopedie

Das mathematische Teilgebiet der K-Theorie beschäftigt sich mit dem Studium von Vektorbündeln auf topologischen Räumen (topologische K-Theorie) oder von Ringen bzw. Schemata (algebraische K-Theorie). Der Name K-Theorie wurde von Alexander Grothendieck kreiert; das K steht für „Klasse“ in einem sehr allgemeinen Sinn.

Geschichte[Bearbeiten | Quelltext bearbeiten]

Um seine Arbeiten zum Satz von Riemann-Roch zu verallgemeinern entwickelte Grothendieck einen neuen Funktor auf der Kategorie der glatten algebraischen Varietäten . Die Elemente von waren Klassen algebraischer Vektorbündel über . Diese Theorie hatte analoge Eigenschaften zu klassischen Kohomologietheorien. Charakteristische Klassen, insbesondere der Chern-Charakter, definieren Morphismen von in Kohomologietheorien.

Unmittelbar nach Grothendieck betrachteten Atiyah und Hirzebruch eine analoge Konstruktion für beliebige kompakte Räume , die topologische K-Theorie , heute meist als bezeichnet. Diese topologische K-Theorie ist einfacher zu berechnen als Grothendiecks K-Gruppen, zum Beispiel gibt der Chern-Charakter einen Isomorphismus und man hat Bott-Periodizität.

Topologische K-Theorie hat Kohomologie-Operationen, die mittels äußerer Produkte von Vektorbündeln definiert werden (sogenannte Adams-Operationen) und damit eine geometrischere Natur haben als die Steenrod-Operationen in singulärer Kohomologie. Diese Operationen hatten in den 60er Jahren spektakuläre Anwendungen. Zum Beispiel berechnete Frank Adams mit ihrer Hilfe die maximale Anzahl linear unabhängiger Vektorfelder auf Sphären beliebiger Dimension. Andere Anwendungen ergaben sich in globaler Analysis (einer der Beweise des Atiyah-Singer-Indexsatzes benutzte topologische K-Theorie) und der Theorie der C*-Algebren.

Die Verallgemeinerung der topologischen K-Theorie in der nichtkommutativen Geometrie führte zur K-Theorie von Banachalgebren.

Die algebraischen K-Gruppen wurden von Bass definiert, sie hatten Anwendungen bei Lösungen des "congruence subgroup problem" und beim s-Kobordismus-Satz.

Als Nächstes gab Milnor eine Definition der algebraischen K-Gruppen . Ihre Berechnung für Körper (Satz von Matsumoto) war die Grundlage für Anwendungen von in Algebra und Zahlentheorie, in Zusammenhang mit der Brauer-Gruppe und Galois-Kohomologie.

Es gab dann verschiedene Ansätze zur Definition höherer K-Gruppen. Die heute allgemein verwandte Definition wurde 1974 von Daniel Quillen auf dem Internationalen Mathematiker-Kongress vorgeschlagen.

Topologische K-Theorie[Bearbeiten | Quelltext bearbeiten]

Es sei ein fester kompakter Hausdorffraum. Dann ist der Quotient der freien abelschen Gruppe auf den Isomorphieklassen von komplexen Vektorbündeln über nach der Untergruppe, die von Elementen der Form

für Vektorbündel erzeugt wird. Diese Konstruktion, die der Konstruktion der ganzen Zahlen aus den natürlichen Zahlen nachempfunden ist, heißt Grothendieck-Gruppe (nach Alexander Grothendieck).

Zwei Vektorbündel und auf definieren genau dann dasselbe Element in , wenn sie stabil äquivalent sind, d. h. wenn es ein triviales Vektorbündel gibt, so dass

Mit dem Tensorprodukt von Vektorbündeln wird zu einem kommutativen Ring mit Einselement.

Der Begriff des Ranges eines Vektorbündels überträgt sich auf Elemente der -Theorie. Die reduzierte K-Theorie ist die Untergruppe der Elemente von Rang 0. Weiter führt man die Bezeichnung ein; dabei bezeichnet die reduzierte Einhängung.

K ist ein kontravarianter Funktor auf der Kategorie der kompakten Hausdorffräume. Er erfüllt Bott-Periodizität mit Periode 2.

Wenn man die analogen Konstruktionen mit reellen Vektorbündeln durchführt, erhält man die Reelle K-Theorie . Für diese gilt Bott-Periodizität mit Periode , d. h. .

Algebraische K-Theorie[Bearbeiten | Quelltext bearbeiten]

Sei ein unitärer Ring, die Gruppe der invertierbaren Matrizen über und der klassifizierende Raum von , das heißt ein asphärischer Raum mit Fundamentalgruppe . Weil die Gruppe der Elementarmatrizen perfekt und ein Normalteiler ist, kann man die Plus-Konstruktion anwenden. Die algebraische K-Theorie des Ringes ist definiert als

für .

Eine (für nicht zur oben definierten isomorphe) Variante der algebraischen K-Theorie ist Milnors K-Theorie. Ihr Zusammenhang mit etaler Kohomologie ist Gegenstand der Milnorvermutung, für deren Beweis Wladimir Wojewodski auf dem internationalen Mathematikerkongress 2002 die Fieldsmedaille verliehen wurde. Der Beweis basiert auf der von Wojewodski entwickelten Homotopietheorie algebraischer Varietäten und der von Beilinson und Lichtenbaum entworfenen motivischen Kohomologie.

Die umfassendste Definition einer algebraischen -Theorie wurde von D. Quillen angegeben und benutzt die Q-Konstruktion.

K-Theorie für Banachalgebren[Bearbeiten | Quelltext bearbeiten]

Die topologische K-Theorie lässt sich auf allgemeine Banachalgebren ausdehnen, wobei die C*-Algebren eine wichtige Rolle spielen. Die topologische K-Theorie kompakter Räume kann als K-Theorie der Banachalgebren der stetigen Funktionen umformuliert und dann auf beliebige Banachalgebren übertragen werden, sogar auf das Einselement der Algebren kann man verzichten. Da die Zuordnung ein kontravianter Funktor von der Kategorie der kompakten Hausdorffräume in die Kategorie der Banachalgebren ist und da die topologische K-Theorie ebenfalls kontravariant ist, erhalten wir insgesamt einen kovarianten Funktor von der Kategorie der Banachalgebren in die Kategorie der abelschen Gruppen.

Da hier auch nicht-kommutative Algebren auftreten können, spricht man von nicht-kommutativer Topologie. Die K-Theorie ist ein wichtiger Untersuchungsgegenstand in der Theorie der C*-Algebren.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

KK-Theorie

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Michael Atiyah: K -theory. Notes by D. W. Anderson. Second edition. Advanced Book Classics. Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989. ISBN 0-201-09394-4
  • Jacek Brodzki: An Introduction to K-theory and Cyclic Cohomology. arxiv:funct-an/9606001.
  • Allen Hatcher: Vector bundles and K-theory (math.cornell.edu).
  • Daniel Quillen: Higher algebraic K-theory: I. In: H. Bass (Hrsg.): Higher K-Theories. Lecture Notes in Mathematics, Band 341. Springer-Verlag, Berlin 1973, ISBN 3-540-06434-6.
  • Charles Weibel: An introduction to algebraic K-theory, (math.rutgers.edu).
  • Bruce Blackadar: K-Theory for Operator Algebras. Springer Verlag, 1986, ISBN 3-540-96391-X.
  • Karlheinz Knapp: Vektorbündel. (link.springer.com).

Weblinks[Bearbeiten | Quelltext bearbeiten]