In mathematics, the Abel–Plana formula is a summation formula discovered independently by Niels Henrik Abel (1823 ) and Giovanni Antonio Amedeo Plana (1820 ). It states that [ 1]
∑ n = 0 ∞ f ( a + n ) = ∫ a ∞ f ( x ) d x + f ( a ) 2 + ∫ 0 ∞ f ( a − i x ) − f ( a + i x ) i ( e 2 π x − 1 ) d x {\displaystyle \sum _{n=0}^{\infty }f\left(a+n\right)=\int _{a}^{\infty }f\left(x\right)dx+{\frac {f\left(a\right)}{2}}+\int _{0}^{\infty }{\frac {f\left(a-ix\right)-f\left(a+ix\right)}{i\left(e^{2\pi x}-1\right)}}dx}
For the case a = 0 {\displaystyle a=0} we have
∑ n = 0 ∞ f ( n ) = 1 2 f ( 0 ) + ∫ 0 ∞ f ( x ) d x + i ∫ 0 ∞ f ( i t ) − f ( − i t ) e 2 π t − 1 d t . {\displaystyle \sum _{n=0}^{\infty }f(n)={\frac {1}{2}}f(0)+\int _{0}^{\infty }f(x)\,dx+i\int _{0}^{\infty }{\frac {f(it)-f(-it)}{e^{2\pi t}-1}}\,dt.}
It holds for functions ƒ that are holomorphic in the region Re(z ) ≥ 0, and satisfy a suitable growth condition in this region; for example it is enough to assume that |ƒ | is bounded by C /|z |1+ε in this region for some constants C , ε > 0, though the formula also holds under much weaker bounds. (Olver 1997 , p.290).
An example is provided by the Hurwitz zeta function ,
ζ ( s , α ) = ∑ n = 0 ∞ 1 ( n + α ) s = α 1 − s s − 1 + 1 2 α s + 2 ∫ 0 ∞ sin ( s arctan t α ) ( α 2 + t 2 ) s 2 d t e 2 π t − 1 , {\displaystyle \zeta (s,\alpha )=\sum _{n=0}^{\infty }{\frac {1}{(n+\alpha )^{s}}}={\frac {\alpha ^{1-s}}{s-1}}+{\frac {1}{2\alpha ^{s}}}+2\int _{0}^{\infty }{\frac {\sin \left(s\arctan {\frac {t}{\alpha }}\right)}{(\alpha ^{2}+t^{2})^{\frac {s}{2}}}}{\frac {dt}{e^{2\pi t}-1}},} which holds for all s ∈ C {\displaystyle s\in \mathbb {C} } , s ≠ 1 . Another powerful example is applying the formula to the function e − n n x {\displaystyle e^{-n}n^{x}} : we obtain
Γ ( x + 1 ) = Li − x ( e − 1 ) + θ ( x ) {\displaystyle \Gamma (x+1)=\operatorname {Li} _{-x}\left(e^{-1}\right)+\theta (x)} where Γ ( x ) {\displaystyle \Gamma (x)} is the gamma function , Li s ( z ) {\displaystyle \operatorname {Li} _{s}\left(z\right)} is the polylogarithm and θ ( x ) = ∫ 0 ∞ 2 t x e 2 π t − 1 sin ( π x 2 − t ) d t {\displaystyle \theta (x)=\int _{0}^{\infty }{\frac {2t^{x}}{e^{2\pi t}-1}}\sin \left({\frac {\pi x}{2}}-t\right)dt} .
Abel also gave the following variation for alternating sums:
∑ n = 0 ∞ ( − 1 ) n f ( n ) = 1 2 f ( 0 ) + i ∫ 0 ∞ f ( i t ) − f ( − i t ) 2 sinh ( π t ) d t , {\displaystyle \sum _{n=0}^{\infty }(-1)^{n}f(n)={\frac {1}{2}}f(0)+i\int _{0}^{\infty }{\frac {f(it)-f(-it)}{2\sinh(\pi t)}}\,dt,} which is related to the Lindelöf summation formula [ 2]
∑ k = m ∞ ( − 1 ) k f ( k ) = ( − 1 ) m ∫ − ∞ ∞ f ( m − 1 / 2 + i x ) d x 2 cosh ( π x ) . {\displaystyle \sum _{k=m}^{\infty }(-1)^{k}f(k)=(-1)^{m}\int _{-\infty }^{\infty }f(m-1/2+ix){\frac {dx}{2\cosh(\pi x)}}.} Let f {\displaystyle f} be holomorphic on ℜ ( z ) ≥ 0 {\displaystyle \Re (z)\geq 0} , such that f ( 0 ) = 0 {\displaystyle f(0)=0} , f ( z ) = O ( | z | k ) {\displaystyle f(z)=O(|z|^{k})} and for arg ( z ) ∈ ( − β , β ) {\displaystyle \operatorname {arg} (z)\in (-\beta ,\beta )} , f ( z ) = O ( | z | − 1 − δ ) {\displaystyle f(z)=O(|z|^{-1-\delta })} . Taking a = e i β / 2 {\displaystyle a=e^{i\beta /2}} with the residue theorem ∫ a − 1 ∞ 0 + ∫ 0 a ∞ f ( z ) e − 2 i π z − 1 d z = − 2 i π ∑ n = 0 ∞ Res ( f ( z ) e − 2 i π z − 1 ) = ∑ n = 0 ∞ f ( n ) . {\displaystyle \int _{a^{-1}\infty }^{0}+\int _{0}^{a\infty }{\frac {f(z)}{e^{-2i\pi z}-1}}\,dz=-2i\pi \sum _{n=0}^{\infty }\operatorname {Res} \left({\frac {f(z)}{e^{-2i\pi z}-1}}\right)=\sum _{n=0}^{\infty }f(n).}
Then ∫ a − 1 ∞ 0 f ( z ) e − 2 i π z − 1 d z = − ∫ 0 a − 1 ∞ f ( z ) e − 2 i π z − 1 d z = ∫ 0 a − 1 ∞ f ( z ) e 2 i π z − 1 d z + ∫ 0 a − 1 ∞ f ( z ) d z = ∫ 0 ∞ f ( a − 1 t ) e 2 i π a − 1 t − 1 d ( a − 1 t ) + ∫ 0 ∞ f ( t ) d t . {\displaystyle {\begin{aligned}\int _{a^{-1}\infty }^{0}{\frac {f(z)}{e^{-2i\pi z}-1}}\,dz&=-\int _{0}^{a^{-1}\infty }{\frac {f(z)}{e^{-2i\pi z}-1}}\,dz\\&=\int _{0}^{a^{-1}\infty }{\frac {f(z)}{e^{2i\pi z}-1}}\,dz+\int _{0}^{a^{-1}\infty }f(z)\,dz\\&=\int _{0}^{\infty }{\frac {f(a^{-1}t)}{e^{2i\pi a^{-1}t}-1}}\,d(a^{-1}t)+\int _{0}^{\infty }f(t)\,dt.\end{aligned}}}
Using the Cauchy integral theorem for the last one. ∫ 0 a ∞ f ( z ) e − 2 i π z − 1 d z = ∫ 0 ∞ f ( a t ) e − 2 i π a t − 1 d ( a t ) , {\displaystyle \int _{0}^{a\infty }{\frac {f(z)}{e^{-2i\pi z}-1}}\,dz=\int _{0}^{\infty }{\frac {f(at)}{e^{-2i\pi at}-1}}\,d(at),} thus obtaining ∑ n = 0 ∞ f ( n ) = ∫ 0 ∞ ( f ( t ) + a f ( a t ) e − 2 i π a t − 1 + a − 1 f ( a − 1 t ) e 2 i π a − 1 t − 1 ) d t . {\displaystyle \sum _{n=0}^{\infty }f(n)=\int _{0}^{\infty }\left(f(t)+{\frac {a\,f(at)}{e^{-2i\pi at}-1}}+{\frac {a^{-1}f(a^{-1}t)}{e^{2i\pi a^{-1}t}-1}}\right)\,dt.}
This identity stays true by analytic continuation everywhere the integral converges, letting a → i {\displaystyle a\to i} we obtain the Abel–Plana formula ∑ n = 0 ∞ f ( n ) = ∫ 0 ∞ ( f ( t ) + i f ( i t ) − i f ( − i t ) e 2 π t − 1 ) d t . {\displaystyle \sum _{n=0}^{\infty }f(n)=\int _{0}^{\infty }\left(f(t)+{\frac {i\,f(it)-i\,f(-it)}{e^{2\pi t}-1}}\right)\,dt.}
The case ƒ (0) ≠ 0 is obtained similarly, replacing ∫ a − 1 ∞ a ∞ f ( z ) e − 2 i π z − 1 d z {\textstyle \int _{a^{-1}\infty }^{a\infty }{\frac {f(z)}{e^{-2i\pi z}-1}}\,dz} by two integrals following the same curves with a small indentation on the left and right of 0.
Abel, N.H. (1823), Solution de quelques problèmes à l'aide d'intégrales définies Butzer, P. L.; Ferreira, P. J. S. G.; Schmeisser, G.; Stens, R. L. (2011), "The summation formulae of Euler–Maclaurin, Abel–Plana, Poisson, and their interconnections with the approximate sampling formula of signal analysis", Results in Mathematics , 59 (3): 359–400, doi :10.1007/s00025-010-0083-8 , ISSN 1422-6383 , MR 2793463 , S2CID 54634413 Olver, Frank William John (1997) [1974], Asymptotics and special functions , AKP Classics, Wellesley, MA: A K Peters Ltd., ISBN 978-1-56881-069-0 , MR 1429619 Plana, G.A.A. (1820), "Sur une nouvelle expression analytique des nombres Bernoulliens, propre à exprimer en termes finis la formule générale pour la sommation des suites", Mem. Accad. Sci. Torino , 25 : 403–418