HNRNPR

From Wikipedia the free encyclopedia

HNRNPR
Available structures
PDBHuman UniProt search: PDBe RCSB
Identifiers
AliasesHNRNPR, HNRPR, hnRNP-R, heterogeneous nuclear ribonucleoprotein R
External IDsOMIM: 607201 MGI: 1891692 HomoloGene: 4251 GeneCards: HNRNPR
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001277121
NM_001277122
NM_001277123
NM_028871
NM_001355182

RefSeq (protein)

n/a

Location (UCSC)Chr 1: 23.3 – 23.34 MbChr 4: 136.04 – 136.09 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Heterogeneous nuclear ribonucleoprotein R is a protein that in humans is encoded by the HNRNPR gene.[5][6]

Function[edit]

This gene belongs to the subfamily of ubiquitously expressed heterogeneous nuclear ribonucleoproteins (hnRNPs). The hnRNPs are RNA-binding proteins and they complex with heterogeneous nuclear RNA (hnRNA). These proteins are associated with pre-mRNAs in the nucleus and appear to influence pre-mRNA processing and other aspects of mRNA metabolism and transport. While all of the hnRNPs are present in the nucleus, some seem to shuttle between the nucleus and the cytoplasm. The hnRNP proteins have distinct nucleic acid binding properties. The protein encoded by this gene has three repeats of RRM domains that bind to RNAs and also contains a nuclear localization motif.[6]

HNRNPR, together with its main RNA interacting partner, 7SK, is essential for axon growth in motoneurons.[7] Depletion of HNRNPR from primary motoneurons inhibits axonal development, but it does not lead to enhanced loss of motor neurons.[7] It also plays an important role in axonal β-actin mRNA translocation, binding directly to the 3'-UTR of β-actin mRNA.[8]

HNRNPR enhances c-fos transcription in vitro by forming a complex with PC4 and Mediator cofactors.[9]

Interactions[edit]

HNRNPR has been shown to interact with SMN1,[10][11] PRMT1,[12][13] TDP-43,[14] and FUS/TLS.[14]

References[edit]

  1. ^ a b c ENSG00000125944 GRCh38: Ensembl release 89: ENSG00000282958, ENSG00000125944Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000066037Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Hassfeld W, Chan EK, Mathison DA, Portman D, Dreyfuss G, Steiner G, Tan EM (January 1998). "Molecular definition of heterogeneous nuclear ribonucleoprotein R (hnRNP R) using autoimmune antibody: immunological relationship with hnRNP P". Nucleic Acids Research. 26 (2): 439–45. doi:10.1093/nar/26.2.439. PMC 147279. PMID 9421497.
  6. ^ a b "Entrez Gene: HNRPR heterogeneous nuclear ribonucleoprotein R".
  7. ^ a b Briese M, Saal-Bauernschubert L, Ji C, Moradi M, Ghanawi H, Uhl M, Appenzeller S, Backofen R, Sendtner M (March 2018). "hnRNP R and its main interactor, the noncoding RNA 7SK, coregulate the axonal transcriptome of motoneurons". Proceedings of the National Academy of Sciences of the United States of America. 115 (12): E2859-68. Bibcode:2018PNAS..115E2859B. doi:10.1073/pnas.1721670115. ISSN 1091-6490. PMC 5866599. PMID 29507242.
  8. ^ Glinka M, Herrmann T, Funk N, Havlicek S, Rossoll W, Winkler C, Sendtner M (2010). "The heterogeneous nuclear ribonucleoprotein-R is necessary for axonal beta-actin mRNA translocation in spinal motor neurons". Human Molecular Genetics. 19 (10): 1951–66. doi:10.1093/hmg/ddq073. ISSN 1460-2083. PMID 20167579.
  9. ^ Fukuda A, Nakadai T, Shimada M, Hisatake K (2009). "Heterogeneous nuclear ribonucleoprotein R enhances transcription from the naturally configured c-fos promoter in vitro". Journal of Biological Chemistry. 284 (35): 23472–80. doi:10.1074/jbc.M109.013656. PMC 2749121. PMID 19581295.
  10. ^ Mourelatos Z, Abel L, Yong J, Kataoka N, Dreyfuss G (October 2001). "SMN interacts with a novel family of hnRNP and spliceosomal proteins". The EMBO Journal. 20 (19): 5443–52. doi:10.1093/emboj/20.19.5443. PMC 125643. PMID 11574476.
  11. ^ Rossoll W, Kröning AK, Ohndorf UM, Steegborn C, Jablonka S, Sendtner M (January 2002). "Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons?". Human Molecular Genetics. 11 (1): 93–105. doi:10.1093/hmg/11.1.93. PMID 11773003.
  12. ^ Wada K, Inoue K, Hagiwara M (August 2002). "Identification of methylated proteins by protein arginine N-methyltransferase 1, PRMT1, with a new expression cloning strategy". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1591 (1–3): 1–10. doi:10.1016/S0167-4889(02)00202-1. PMID 12183049.
  13. ^ Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (September 2005). "A human protein-protein interaction network: a resource for annotating the proteome". Cell. 122 (6): 957–68. doi:10.1016/j.cell.2005.08.029. hdl:11858/00-001M-0000-0010-8592-0. PMID 16169070. S2CID 8235923.
  14. ^ a b Ling SC, Albuquerque CP, Han JS, Lagier-Tourenne C, Tokunaga S, Zhou H, Cleveland DW (July 2010). "ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS". Proceedings of the National Academy of Sciences of the United States of America. 107 (30): 13318–23. Bibcode:2010PNAS..10713318L. doi:10.1073/pnas.1008227107. PMC 2922163. PMID 20624952.

Further reading[edit]

External links[edit]