Photon-Induced Near-field Electron Microscopy

From Wikipedia the free encyclopedia

Photon-Induced Near-field Electron Microscopy (PINEM) is a variant of the Ultrafast Transmission Electron Microscopy technique and is based on the inelastic coupling between electrons and photons in presence of a surface or a nanostructure.[1] This method allows one to investigate time-varying nanoscale electromagnetic fields in an electron microscope.[2][3]

For visible light, such inelastic coupling between electrons and light, i.e. direct absorption or emission of photons, is forbidden in free space (vacuum) since it is not possible to simultaneously conserve both energy and momentum. This constraint can be circumvented when photon momentum is broadened as a result of light being reflected or scattered from a surface or nanostructure. This process would then generate evanescently confined near-fields with a broad momentum distribution, reaching high intensities in a nanoconfined space and thus also boosting the cross section of electron-light coupling.

Theoretically, the analytical description of the phenomenon has been provided by Park et al.,[4] Garcia de Abajo et al.[5] and Feist et al.[6] In these works the authors demonstrated that the strength of electron-light interaction depends on the linear coupling to the electric field projection along the electron propagation direction. In particular, Feist et al.[6] also experimentally demonstrated that the interaction process results in a coherent spectral redistribution of the electron wave packet producing Rabi oscillations of a multi-level quantum ladder in which the states are separated by the photon energy.

Particularly appealing for photonics application is the fact that the spectral, spatial and momentum distributions of the electrons subjected to such inelastic scattering process are strictly correlated with the near-field distribution mediating the electron-light coupling. The latter can be thus mapped in space and time with ultrafast electron microscopy methods, providing femtosecond movies of nanoscale fields in and around nanostructures.[7][8][9]

More interestingly, the PINEM method can also be used to dynamically manipulate the wave properties of the electron beam by using suitably prepared electromagnetic field configuration. In such a way, one can modulate coherently the amplitude and phase of the electron beam along both the longitudinal and the transverse directions.[6][10][11][12][13][14][15]

See also[edit]

References[edit]

  1. ^ Barwick, Brett; Flannigan, David J.; Zewail, Ahmed H. (December 2009). "Photon-induced near-field electron microscopy". Nature. 462 (7275): 902–906. doi:10.1038/nature08662. eISSN 1476-4687. ISSN 0028-0836. PMID 20016598. S2CID 4423704.
  2. ^ Piazza, L; Lummen, T.T.A.; Quiñonez, E; Murooka, Y; Reed, B.W.; Barwick, B; Carbone, F (2 March 2015). "Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field". Nature Communications. 6 (1): 6407. doi:10.1038/ncomms7407. eISSN 2041-1723. PMC 4366487. PMID 25728197.
  3. ^ Barwick, Brett; Zewail, Ahmed H. (2015-10-21). "Photonics and Plasmonics in 4D Ultrafast Electron Microscopy". ACS Photonics. 2 (10): 1391–1402. doi:10.1021/acsphotonics.5b00427. ISSN 2330-4022.
  4. ^ S. T. Park; M. Lin; A. H. Zewail (December 2010). "Photon-induced near-field electron microscopy (PINEM): theoretical and experimental". New Journal of Physics. 12 (12): 123028. doi:10.1088/1367-2630/12/12/123028. S2CID 9985483.
  5. ^ F. J. García de Abajo; A. Asenjo-Garcia; M. Kociak (April 2010). "Multiphoton Absorption and Emission by Interaction of Swift Electrons with Evanescent Light Fields". Nano Letters. 10 (5): 1859–1863. doi:10.1021/nl100613s. PMID 20415459.
  6. ^ a b c A. Feist; K. E. Echternkamp; J. Schauss; S. V. Yalunin; S. Schäfer; C. Ropers (May 2015). "Quantum coherent optical phase modulation in an ultrafast transmission electron microscope". Nature. 521 (7551): 200–203. doi:10.1038/nature14463. PMID 25971512. S2CID 4447578.
  7. ^ I. Madan; G. M. Vanacore; E. Pomarico; G. Berruto; R. J. Lamb; D. McGrouther; T. T. A. Lummen; T. Latychevskaia; F. J. García de Abajo; F. Carbone (May 2019). "Holographic imaging of electromagnetic fields via electron-light quantum interference". Science Advances. 5 (5): eaav8358. doi:10.1126/sciadv.aav8358. PMC 6499551. PMID 31058225.
  8. ^ Wang, Kangpeng; Dahan, Raphael; Shentcis, Michael; Kauffmann, Yaron; Ben Hayun, Adi; Reinhardt, Ori; Tsesses, Shai; Kaminer, Ido (2020-06-04). "Coherent interaction between free electrons and a photonic cavity". Nature. 582 (7810): 50–54. arXiv:1908.06206. doi:10.1038/s41586-020-2321-x. ISSN 0028-0836. PMID 32494081. S2CID 219281767.
  9. ^ Kfir, Ofer; Lourenço-Martins, Hugo; Storeck, Gero; Sivis, Murat; Harvey, Tyler R.; Kippenberg, Tobias J.; Feist, Armin; Ropers, Claus (2020-06-04). "Controlling free electrons with optical whispering-gallery modes". Nature. 582 (7810): 46–49. arXiv:1910.09540. doi:10.1038/s41586-020-2320-y. ISSN 0028-0836. PMID 32494079. S2CID 204823876.
  10. ^ Morimoto, Yuya; Baum, Peter (27 November 2017). "Diffraction and microscopy with attosecond electron pulse trains". Nature Physics. 14 (3): 252–256. doi:10.1038/s41567-017-0007-6. eISSN 1745-2481. ISSN 1745-2473. S2CID 125210956.
  11. ^ Kozák, M.; Eckstein, T.; Schönenberger, N.; Hommelhoff, P. (9 October 2017). "Inelastic ponderomotive scattering of electrons at a high-intensity optical travelling wave in vacuum". Nature Physics. 14 (2): 121–125. arXiv:1905.05240. doi:10.1038/nphys4282. eISSN 1745-2481. ISSN 1745-2473. S2CID 126006282.
  12. ^ Priebe, Katharina E.; Rathje, Christopher; Yalunin, Sergey V.; Hohage, Thorsten; Feist, Armin; Schäfer, Sascha; Ropers, Claus (December 2017). "Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy". Nature Photonics. 11 (12): 793–797. arXiv:1706.03680. doi:10.1038/s41566-017-0045-8. ISSN 1749-4885. S2CID 119105731.
  13. ^ Vanacore, G. M.; Madan, I.; Berruto, G.; Wang, K.; Pomarico, E.; Lamb, R. J.; McGrouther, D.; Kaminer, I.; Barwick, B.; García de Abajo, F. Javier; Carbone, F. (12 July 2018). "Attosecond coherent control of free-electron wave functions using semi-infinite light fields". Nature Communications. 9 (1): 2694. doi:10.1038/s41467-018-05021-x. eISSN 2041-1723. PMC 6043599. PMID 30002367.
  14. ^ K. E. Echternkamp; A. Feist; S. Schäfer; C. Ropers (August 2016). "Ramsey-type phase control of free-electron beams". Nature Physics. 12 (11): 1000–1004. arXiv:1605.00534. doi:10.1038/NPHYS3844. S2CID 119214197.
  15. ^ G. M. Vanacore; G. Berruto; I. Madan; E. Pomarico; P. Biagioni; R. J. Lamb; D. McGrouther; O. Reinhardt; I. Kaminer; B. Barwick; H. Larocque; V. Grillo; E. Karimi; F. J. García de Abajo; F. Carbone (May 2019). "Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields". Nature Materials. 18 (6): 573–579. arXiv:1806.00366. doi:10.1038/s41563-019-0336-1. PMID 31061485. S2CID 119186105.