Número altamente compuesto
Un número altamente compuesto (o anti-primo) es un entero positivo con más divisores que cualquier entero positivo más pequeño. El término fue acuñado por Ramanujan (1915). Aun así, Jean-Pierre Kahane ha sugerido que el concepto se remonta a Platón, quien puso en 5040 el número ideal de ciudadanos en una ciudad porque 5040 tiene más divisores que otros números más pequeños.[1]
El concepto relacionado de número compuesto en gran parte se refiere a un entero positivo que tiene al menos tantos divisores como cualquier entero positivo más pequeño.
Ejemplos
[editar]Los primeros 38 números altamente compuestos están listados en la tabla de abajo (sucesión A002182 en OEIS).
Orden | NAC n | Factorización en primos | Exponentes primos | Factores primos | d(n) | Factorización primorial |
---|---|---|---|---|---|---|
1 | 1 | 0 | 1 | |||
2* | 2 | 1 | 1 | 2 | ||
3 | 4 | 2 | 2 | 3 | ||
4* | 6 | 1,1 | 2 | 4 | ||
5* | 12 | 2,1 | 3 | 6 | ||
6 | 24 | 3,1 | 4 | 8 | ||
7 | 36 | 2,2 | 4 | 9 | ||
8 | 48 | 4,1 | 5 | 10 | ||
9* | 60 | 2,1,1 | 4 | 12 | ||
10* | 120 | 3,1,1 | 5 | 16 | ||
11 | 180 | 2,2,1 | 5 | 18 | ||
12 | 240 | 4,1,1 | 6 | 20 | ||
13* | 360 | 3,2,1 | 6 | 24 | ||
14 | 720 | 4,2,1 | 7 | 30 | ||
15 | 840 | 3,1,1,1 | 6 | 32 | ||
16 | 1260 | 2,2,1,1 | 6 | 36 | ||
17 | 1680 | 4,1,1,1 | 7 | 40 | ||
18* | 2520 | 3,2,1,1 | 7 | 48 | ||
19* | 5040 | 4,2,1,1 | 8 | 60 | ||
20 | 7560 | 3,3,1,1 | 8 | 64 | ||
21 | 10080 | 5,2,1,1 | 9 | 72 | ||
22 | 15120 | 4,3,1,1 | 9 | 80 | ||
23 | 20160 | 6,2,1,1 | 10 | 84 | ||
24 | 25200 | 4,2,2,1 | 9 | 90 | ||
25 | 27720 | 3,2,1,1,1 | 8 | 96 | ||
26 | 45360 | 4,4,1,1 | 10 | 100 | ||
27 | 50400 | 5,2,2,1 | 10 | 108 | ||
28* | 55440 | 4,2,1,1,1 | 9 | 120 | ||
29 | 83160 | 3,3,1,1,1 | 9 | 128 | ||
30 | 110880 | 5,2,1,1,1 | 10 | 144 | ||
31 | 166320 | 4,3,1,1,1 | 10 | 160 | ||
32 | 221760 | 6,2,1,1,1 | 11 | 168 | ||
33 | 277200 | 4,2,2,1,1 | 10 | 180 | ||
34 | 332640 | 5,3,1,1,1 | 11 | 192 | ||
35 | 498960 | 4,4,1,1,1 | 11 | 200 | ||
36 | 554400 | 5,2,2,1,1 | 11 | 216 | ||
37 | 665280 | 6,3,1,1,1 | 12 | 224 | ||
38* | 720720 | 4,2,1,1,1,1 | 10 | 240 |
La tabla de abajo muestra todos los divisores de uno de estos números.
El número altamente compuesto: 10080 = (2 × 2 × 2 × 2 × 2) × (3 × 3) × 5 × 7 | |||||
1×10080 | 2 × 5040 | 3 × 3360 | 4 × 2520 | 5 × 2016 | 6 × 1680 |
7× 1440 | 8 × 1260 | 9 × 1120 | 10 × 1008 | 12 × 840 | 14 × 720 |
15× 672 | 16 × 630 | 18 × 560 | 20 × 504 | 21 × 480 | 24 × 420 |
28× 360 | 30 × 336 | 32 × 315 | 35 × 288 | 36 × 280 | 40 × 252 |
42× 240 | 45 × 224 | 48 × 210 | 56 × 180 | 60 × 168 | 63 × 160 |
70× 144 | 72 × 140 | 80 × 126 | 84 × 120 | 90 × 112 | 96 × 105 |
Nota: los números en negrita son a su vez altamente compuestos. Sólo el vigésimo número altamente compuesto 7560 (= 3 × 2520) está ausente.10080 es también número 7-liso (sucesión A002473 en OEIS). |
El número altamente compuesto 15,000 se encuentra en el sitio web de Achim Flammenkamp . Es el producto de 230 primos:
donde es la secuencia de números primos sucesivos, y todos los términos omitidos ( a ) son factores con exponente igual a 1 (es decir, el número es ).[2]
Véase también
[editar]Referencias
[editar]- ↑ Kahane, Jean-Pierre (February 2015), «Bernoulli convolutions and self-similar measures after Erdős: A personal hors d'øeuvre», Bulletin of the American Mathematical Society 62 (2): 136-140..
- ↑ Flammenkamp, Achim, Highly Composite Numbers..