Fonction homogène
En mathématiques, une fonction homogène est une fonction qui a un comportement d’échelle multiplicatif par rapport à son ou ses arguments : si l'argument (vectoriel au besoin) est multiplié par un scalaire, alors le résultat sera multiplié par ce scalaire porté à une certaine puissance.
Définitions
[modifier | modifier le code]Soient E et F deux espaces vectoriels sur un même corps commutatif K.
Une fonction f de E dans F est dite homogène de degré α si
Si K est un sous-corps des réels, on dit que f est positivement homogène de degré α[note 1] si
Si K est un sous-corps des complexes, on dit que f est absolument homogène de degré α si
Selon le contexte, « positivement homogène » peut signifier « positivement homogène de degré α pour un certain α » ou « positivement homogène de degré 1 »[3].
Exemples
[modifier | modifier le code]- L'application qui à un n-uplet de réels associe son maximum est positivement homogène de degré 1.
- Une application linéaire est homogène de degré 1.
- Un polynôme homogène est homogène de degré égal à celui de chacun de ses monômes.
- Une fonction sous-linéaire est positivement homogène de degré 1. En particulier, il en est ainsi de la jauge d'un ensemble convexe, de la fonction d'appui d'un ensemble non vide, d'une norme, etc.
- La dérivée directionnelle (au sens de Dini) d'une fonction f définie sur un ℝ-espace vectoriel est, lorsqu'elle existe, positivement homogène de degré 1, lorsqu'on la voit comme fonction de la direction de dérivation.
- Le déterminant d'une matrice de est homogène de degré n.
Propriété
[modifier | modifier le code]Une fonction différentiable de ℝn dans ℝm est positivement homogène si, et seulement si, elle vérifie l'identité d'Euler et dans ce cas, ses dérivées partielles sont positivement homogènes (de degré 1 de moins).
Notes et références
[modifier | modifier le code]Notes
[modifier | modifier le code]- appelé homogène de degré α dans certains ouvrages[1].
Références
[modifier | modifier le code]- Knut Sydsaeter, Peter Hammond (trad. de l'anglais par Micheline Citta-Vanthemsche), Mathématiques pour l'économie [« Mathematics for Economic Analysis »], Pearson, .
- Pour α = 1, c'est par exemple la définition de (en) R. Tyrrell Rockafellar, Convex Analysis, Princeton University Press, (lire en ligne), p. 30. Mais d'autres auteurs préfèrent inclure le cas t = 0 dans la définition, imposant ainsi de plus , comme (en) Eric Schechter, Handbook of Analysis and Its Foundations, Academic Press, (lire en ligne), p. 313 ou (en) V. F. Demyanov, « Exhausters of a positively homogeneous function », Optimization, vol. 45, nos 1-4, , p. 13-29 (DOI 10.1080/02331939908844424).
- Par exemple, Rockafellar 1970, p. 30, donne la définition d'une fonction « positivement homogène (de degré 1) » et dans toute la suite, ne précise plus ce degré, et dans Schechter 1997, p. 30, le degré 1 est implicite dès la définition.
Voir aussi
[modifier | modifier le code]Article connexe
[modifier | modifier le code]Lien externe
[modifier | modifier le code]« 4 Fonctions homogènes » (version du sur Internet Archive) : cours en ligne