חפיפת מטריצות
יש לשכתב ערך זה. הסיבה היא: פתיח לא מדויק, דוגמאות שגויות או חסרות. | ||
יש לשכתב ערך זה. הסיבה היא: פתיח לא מדויק, דוגמאות שגויות או חסרות. | |
באלגברה ליניארית, מושג החפיפה מתייחס לקשר בין שתי מטריצות ו- כאשר קיימת מטריצה הניתנת להפיכה כך שניתן לקבל את מ- על ידי שינוי הבסיס באמצעות המטריצה . המשמעות היא ש- ו- מייצגים את אותה תבנית ביליניארית בבסיסים שונים. יחס חפיפה זה, כהגדרתו הוא גם יחס שקילות, כלומר עבור כל מטריצות, ו-, אם חופפת ו- חופפת , אז חייבת גם לחפוף . בנוסף, כל מטריצה חופפת את עצמה ואף מטריצה לא חופפת את מטריצת האפס. מושג החפיפה קשור קשר הדוק לרעיון של תוצרים פנימיים וניתן להשתמש בו כדי לקבוע מתי שתי מטריצות מייצגות את אותו מכפלה פנימית.
מטריצה היא מערך מלבני של מספרים, סמלים או ביטויים, המסודרים בשורות ובעמודות. מטריצות משמשות לעיתים קרובות לייצוג טרנספורמציות ליניאריות וניתן להוסיף, להחסיר ולהכפיל אותן לפי כללים מסוימים.
הגדרה
[עריכת קוד מקור | עריכה]תהיינה מטריצות חופפות אם קיימת מטריצה הפיכה ,
כך ש: , כאשר הוא הצמוד ההרמיטי של (מעל שדה ממשי: (שחלוף מטריצות) אך מעל שדה המספרים המרוכבים: , כלומר: לשחלוף נוספת הצמדה מרוכבת).
ניתן להראות כי כל שתי מטריצות המייצגות את אותה תבנית ביליניארית בבסיסים שונים הן חופפות.
מכך נובע גם כי מטריצה מייצגת מכפלה פנימית אם ורק אם היא חופפת למטריצת היחידה .
הוכחה:
נניח כי חופפת ל-. מכאן נובע שקיימת מטריצה הפיכה כך ש-. לכן .
כלומר הרמיטית. נותר להוכיח כי מטריצה חיובית. יהא . אזי .
הביטוי האחרון שקיבלנו הוא המכפלה הפנימית הסטנדרטית ב-, לכן .
שוויון מתקבל אם ורק אם , וכיוון ש- הפיכה, אזי השוויון יתקבל אם ורק אם . כלומר חיובית לחלוטין.
נניח כי מייצגת מכפלה פנימית. אזי הרמיטית וחיובית לחלוטין.
תהי מטריצת מעבר מהבסיס הסטנדרטי לבסיס אורתונורמלי במובן הבא (הדלתא של קרונקר).
אזי שכן . מ.ש.ל.
דוגמאות
[עריכת קוד מקור | עריכה]דוגמה 1
[עריכת קוד מקור | עריכה]נתונות המטריצות הבאות:
כפי שמוצג בדוגמה הקודמת, נוכל למצוא מטריצה הפיכה המקיימת , ולכן ו- חופפות.
דוגמה 2
[עריכת קוד מקור | עריכה]נתונות המטריצות הבאות:
לא ניתן למצוא מטריצה הפיכה המקיימת , ולכן ו- אינן חופפות.
שימושים
[עריכת קוד מקור | עריכה]- משפט הפירוק הספקטרלי: משפט הפירוק הספקטרלי קובע שכל מטריצה נורמלית (מטריצה שהיא גם הרמיטית וגם יחידה) ניתנת ללכסון על ידי מטריצה יחידה. המשמעות היא שקיימת מטריצה יחידה כך ש- היא מטריצה אלכסונית.
- פירוק לערכים סינגולריים: פירוק לערכים סינגולריים היא שיטה הקובעת שכל מטריצה ניתנת לפירוק למכפלה של שלוש מטריצות: , כאשר ו- הן מטריצות יחידות ו- היא מטריצה אלכסונית. פירוק זה ייחודי עד לבחירת הסימנים של העמודים של ו-.
- מכפלה פנימית: מטריצה A מייצגת מכפלה פנימית אם ורק אם היא עולה בקנה אחד עם מטריצת היחידה , כלומר קיימת מטריצה הניתנת להפיכה כך ש-.
- תהליך גרם-שמידט: תהליך גרם-שמידט הוא אלגוריתם לבניית בסיס אורתונורמלי מקבוצה נתונה של וקטורים. הוא מסתמך על הרעיון של חפיפה בין וקטורים למכפלה הפנימית.
- מכניקת הקוונטים: במכניקת הקוונטים, החפיפה של שתי פונקציות גלים היא מדד לדמיון ביניהן. החפיפה של שתי פונקציות גל ניתנת על ידי המכפלה הפנימית של פונקציות הגל, שניתן לייצג אותה כמטריצה.
- עיבוד אותות: בעיבוד אותות, ניתן להשתמש במטריצות לייצוג אותות וניתן לקבוע את החפיפה בין שני אותות על ידי חישוב החפיפה בין המטריצות המתאימות.
- ניתוח נתונים: בניתוח נתונים, ניתן להשתמש במטריצות לייצוג מערכי נתונים וניתן לקבוע את החפיפה בין שני מערכי נתונים על ידי חישוב החפיפה בין המטריצות המתאימות.
- עיבוד תמונה: בעיבוד תמונה ניתן להשתמש במטריצות לייצוג תמונות וניתן לקבוע את החפיפה בין שתי תמונות על ידי חישוב החפיפה בין המטריצות המתאימות.
נושאים באלגברה ליניארית | ||
---|---|---|
מושגי יסוד | שדה • מרחב וקטורי • משוואה ליניארית • מערכת משוואות ליניאריות • העתקה ליניארית • מטריצה | |
וקטורים | סקלר • כפל בסקלר • צירוף ליניארי • תלות ליניארית • קבוצה פורשת • בסיס • וקטור קואורדינטות • ממד | |
מטריצות | כפל מטריצות • שחלוף • דטרמיננטה • דירוג מטריצות • דרגה • עקבה • מטריצה מצורפת • מטריצת מעבר • מטריצה משולשית • דמיון מטריצות • ערך עצמי • פולינום אופייני • לכסון מטריצות • צורת ז'ורדן | |
העתקות | העתקה ליניארית • קואורדינטות • מטריצה מייצגת • גרעין • אנדומורפיזם • איזומורפיזם • העתקה אפינית • העתקה פרויקטיבית | |
מרחבי מכפלה פנימית | מכפלה סקלרית • מכפלה וקטורית • אורתוגונליות • מטריצה סימטרית • אופרטור הרמיטי • אופרטור אוניטרי • טרנספורמציה נורמלית • נורמה • מטריקה | |
תבניות | תבנית ביליניארית • תבנית סימטרית • תבנית הרמיטית • תבנית סימפלקטית • חפיפת מטריצות • משפט סילבסטר • תבנית מולטי-ליניארית אנטי-סימטרית • אוריינטציה • צפיפות • טנזור |
קישורים חיצוניים
[עריכת קוד מקור | עריכה]- חפיפת מטריצות, באתר MathWorld (באנגלית)