Теорема Дезарга
Теорема Дезарга является одной из основных теорем проективной геометрии.
Формулировки
[править | править код]Если два треугольника расположены на плоскости таким образом, что прямые, соединяющие соответственные вершины треугольников, проходят через одну точку, то три точки, в которых пересекаются продолжения трёх пар соответственных сторон треугольников, лежат на одной прямой.
Обратное тоже верно:
Если два треугольника расположены на плоскости таким образом, что три точки, в которых пересекаются продолжения трёх пар соответственных сторон треугольников, лежат на одной прямой, то прямые, соединяющие соответственные вершины треугольников, проходят через одну точку.
Замечания
[править | править код]- Эти две теоремы являются двойственными по отношению друг к другу, и иногда объединяются в единую теорему, которая формулируется так: «Два треугольника имеют центр перспективы[1] тогда и только тогда, когда они имеют ось перспективы[2]».
- Теорема Дезарга выполняется не во всех проективных плоскостях. Плоскости, в которых теорема выполняется, называются дезарговыми. Например, вещественная проективная плоскость дезаргова, а плоскость Молтона — недезаргова.
О доказательствах
[править | править код]- Одно из самых распространённых доказательств основывается на переходе в трёхмерное пространство — достаточно представить оба треугольника двумя сечениями трёхгранной пирамиды. Вся картина при этом рассматривается как проекция на плоскость пространственной структуры.
- Другое доказательство состоит в применении проективного преобразования, которое переводит две из пересечений продолжений сторон на идеальную прямую. После этого остаётся доказать параллельность третьей пары сторон. Последнее легко видеть из подобия треугольников.
- Ещё одно доказательство состоит в трёхкратном использовании теоремы Менелая.
Вариации и обобщения
[править | править код]Понселе основал на теореме Дезарга свою изящную теорию гомологических фигур. Он называл два треугольника, о которых идет речь в теореме Дезарга, гомологическими, точку пересечения прямых, соединяющих попарно их вершины — центром гомологии, а прямую, на которой попарно пересекаются их стороны, — осью гомологии.
Понселе дал следующую теорему для геометрии в пространстве, как соответствующую теореме Дезарга на плоскости:
Если два тетраэдра имеют вершины, лежащие попарно на четырёх прямых, сходящихся в одной точке, то плоскости противоположных граней пересекаются по четырём прямым, находящимся в одной плоскости. |
Эта теорема может быть обобщена ещё далее следующим образом:
Когда вершины двух тетраэдров помещены попарно на четырёх прямых, принадлежащих к одной группе образующих гиперболоида с одною полостью, то грани их пересекаются по четырём прямым, которые принадлежат к образующим другого гиперболоида. |
Конфигурация Дезарга
[править | править код]Точки и прямые в теореме Дезарга образуют так называемую конфигурацию Дезарга. Здесь через каждую из 10 точек проходят 3 прямые и на каждой из 10 прямых лежат 3 точки. При этом любая из 10 точек может быть принята за «вершину трёхгранной пирамиды» («дезаргову точку») в приведённом выше доказательстве. Любая прямая может быть взята как «дезаргова прямая». Фиксирование дезарговой точки или дезарговой прямой полностью определяет всю конфигурацию.
Теорема Дезарга и аксиоматика проективной геометрии
[править | править код]При построении проективной геометрии плоскости без выхода в трёхмерное пространство, теорема Дезарга не выводится из основных аксиом проективной плоскости. Это означает, что возможно построить проективную плоскость, где теорема Дезарга неверна. Например, плоскость Кэли — проективная плоскость над алгеброй Кэли не является дезарговой (см. также недезаргова геометрия).
При построении дезарговой проективной плоскости утверждение теоремы Дезарга добавляют к системе аксиом проективной плоскости в качестве ещё одной аксиомы.
История
[править | править код]Теорема Дезарга была открыта французским геометром Дезаргом: она, вместе с двумя другими, из которых одна есть её обратная, была помещена в конце сочинения Traité de perspective, составленного Боссом согласно началам и методу Дезарга и появившегося в 1636 году. В этом сочинении было отмечено, что это утверждение очевидно, когда треугольники находятся в двух разных плоскостях; рассмотрение же случая, когда они лежат в одной плоскости, доставляет один из первых примеров употребления теоремы Менелая у новых геометров. Известность теорема Дезарга получила в начале XIX века благодаря её употреблению в работах Брианшона и Понселе.
См. также
[править | править код]Примечания
[править | править код]Ссылки
[править | править код]- Шаль, Мишель. Исторический обзор происхождения и развития геометрических методов. Т. 1, § 28. М., 1883.
- Коксетер Г. С. М., Грейтцер С. П. Новые встречи с геометрией. — М.: Наука, 1978. — Т. 14. — (Библиотека математического кружка).
- Понарин Я. П. Элементарная геометрия. В 2 т. — М.: МЦНМО, 2004. — С. 74-76. — ISBN 5-94057-170-0.