Уплощённая треугольная клиноротонда
Уплощённая треугольная клиноротонда | |||
---|---|---|---|
| |||
Тип | многогранник Джонсона | ||
Свойства | выпуклая | ||
Комбинаторика | |||
Элементы |
| ||
Грани | 13 треугольников 3 квадрата 3 пятиугольника 1 шестиугольник | ||
Конфигурация вершины | 3(33.5) 6(3.4.3.5) 3(3.5.3.5) 2x3(32.4.6) | ||
Классификация | |||
Обозначения | J92, М20 | ||
Группа симметрии | C3v | ||
Медиафайлы на Викискладе |
Уплощённая треуго́льная клинорото́нда[1][2] — один из многогранников Джонсона (J92, по Залгаллеру — М20).
Составлена из 20 граней: 13 правильных треугольников, 3 квадратов, 3 правильных пятиугольников и 1 правильного шестиугольника. Шестиугольная грань окружена тремя квадратными и тремя треугольными; каждая пятиугольная — пятью треугольными; каждая квадратная — шестиугольной и тремя треугольными; среди треугольных 1 грань окружена тремя пятиугольными, 3 грани — двумя пятиугольными и квадратной, 6 граней — пятиугольной, квадратной и треугольной, остальные 3 — шестиугольной и двумя треугольными.
Имеет 36 рёбер одинаковой длины. 3 ребра располагаются между шестиугольной и квадратной гранями, 3 ребра — между шестиугольной и треугольной, 15 рёбер — между пятиугольной и треугольной, 9 рёбер — между квадратной и треугольной, остальные 6 — между двумя треугольными.
У уплощённой треугольной клиноротонды 18 вершин. В 3 вершинах (расположенных как вершины правильного треугольника) сходятся две пятиугольных грани и две треугольных; в 6 вершинах (расположенных как вершины неправильного плоского шестиугольника) сходятся пятиугольная, квадратная и две треугольных грани; в 3 вершинах (расположенных как вершины правильного треугольника) сходятся пятиугольная и три треугольных грани; в 6 вершинах (расположенных как вершины правильного шестиугольника) сходятся шестиугольная, квадратная и две треугольных грани.
Метрические характеристики
[править | править код]Если уплощённая треугольная клиноротонда имеет ребро длины , её площадь поверхности и объём выражаются как[2]
В координатах
[править | править код]Уплощённую треугольную клиноротонду с длиной ребра можно расположить в декартовой системе координат так, чтобы её вершины имели следующие координаты:
- треугольник, параллельный шестиугольнику:
- основания треугольников, имеющих с первым треугольником общую вершину:
- вершины пятиугольников напротив первого треугольника:
- шестиугольник:
где — отношение золотого сечения.
При этом ось симметрии многогранника будет совпадать с осью Oz, а одна из трёх плоскостей симметрии — с плоскостью yOz.
Примечания
[править | править код]- ↑ Залгаллер В. А. Выпуклые многогранники с правильными гранями / Зап. научн. сем. ЛОМИ, 1967. — Т. 2. — Cтр. 24.
- ↑ 1 2 А. В. Тимофеенко. Несоставные многогранники, отличные от тел Платона и Архимеда. (PDF) Фундаментальная и прикладная математика, 2008, том 14, выпуск 2. — Стр. 188—190, 204. (Архивная копия от 30 августа 2021 на Wayback Machine)
Ссылки
[править | править код]- Weisstein, Eric W. Уплощённая треугольная клиноротонда (англ.) на сайте Wolfram MathWorld.