Eisensteinkriterium

Van Wikipedia, de gratis encyclopedie

Das Eisensteinkriterium oder auch Irreduzibilitätskriterium von Eisenstein dient in der Algebra zum Nachweis der Irreduzibilität eines gegebenen Polynoms. Es lassen sich damit leichter Aussagen über die Teilbarkeit von Polynomen treffen.

Das Kriterium ist nach dem Mathematiker Gotthold Eisenstein benannt, der dazu 1850 einen öffentlichkeitswirksamen Aufsatz in Crelles Journal (Band 39) verfasste.[1] Schon vier Jahre zuvor war es ebenda zum ersten Mal von Theodor Schönemann veröffentlicht worden (Band 32). Es wurde und wird teilweise auch nach Schönemann benannt.[2]

Sei ein Polynom mit ganzzahligen Koeffizienten, also

Wenn eine Primzahl existiert, die alle Koeffizienten bis teilt, den Koeffizienten jedoch nicht quadratisch und gar nicht teilt; wenn also

  • für alle und
  • und

gilt, dann ist in irreduzibel. Ist zusätzlich noch primitiv, so ist es auch irreduzibel in .

Verallgemeinerung

[Bearbeiten | Quelltext bearbeiten]

Sind die Koeffizienten aus einem faktoriellen Ring und existiert ein entsprechendes Primelement , so ist das Polynom irreduzibel im Polynomring des Quotientenkörpers von

  • Ein Polynom, für das ein solches existiert, wird auch Eisenstein-Polynom bezüglich genannt.
  • Das Kriterium ist nur hinreichend; auch wenn es nicht erfüllt ist, kann das Polynom irreduzibel sein. Die Zerlegbarkeit eines Polynoms kann damit nicht nachgewiesen werden.
  • Für eine Zerlegung in kann man das Kriterium wie folgt benutzen. Es gilt natürlich: hat Inhalt 1 und ist irreduzibel in irreduzibel in Fasst man also als diophantische Gleichung für x auf, so lässt sich folgern: Ist das Kriterium für erfüllt, so gibt es auch keine ganzzahlige Lösung der Gleichung.
  • Allerdings folgt aus dem Gaußschen Lemma auch die Umkehrung: irreduzibel in irreduzibel in [3]
  • ist nach obigem Kriterium irreduzibel über (wähle ). Dies bedeutet, dass die reelle Nullstelle des Polynoms irrational sein muss.
  • ist irreduzibel in wenn eine Primzahl ist oder einen einfachen Primteiler hat. Insbesondere kann dann für kein rational sein.
  • erfüllt das Kriterium nicht und ist irreduzibel. erfüllt das Kriterium genauso wenig, ist aber zerlegbar in
  • erfüllt das Kriterium mit , ist also irreduzibel in Wegen ist das Polynom aber reduzibel in , denn es zerfällt dort in ein Produkt zweier Nichteinheiten.
  • Das Polynom kann als Element im Ring der Polynome in mit Koeffizienten im faktoriellen Ring aufgefasst werden. Es ist irreduzibel in , also auch ein Primelement. Nach dem verallgemeinerten Eisensteinkriterium ist also irreduzibel in .
  • Für jede Primzahl ist das Kreisteilungspolynom in nach dem Eisensteinkriterium irreduzibel in . Da das Kriterium nicht direkt anwendbar ist, wird eine Variablensubstitution vorgenommen. Der durch
und
festgelegte Automorphismus auf hat die inverse Variablensubstitution , welche durch
und
definiert ist. Des Weiteren gilt
Daraus folgt, dass
gilt. Dabei ist die rechte Seite der Gleichung als Element aus dem Quotientenkörper von anzusehen. Da die Division ohne Rest aufgeht, ist die rechte Seite der Gleichung aber insbesondere auch ein Element aus . Mit dem binomischen Lehrsatz folgt:
Nach dem Eisensteinkriterium ist irreduzibel, denn es gilt
für
ist als Inverses des Automorphismus ebenfalls ein Automorphismus. Da Automorphismen irreduzible Polynome auf irreduzible Polynome abbilden, ist irreduzibel in

Der Beweis läuft per Widerspruch: Angenommen, wäre ein Eisensteinpolynom bezüglich und es gäbe zwei nicht-konstante Polynome und in mit Da nach Voraussetzung alle bis auf den Leitkoeffizienten durch teilbar sind, gilt folgendes Modulo-Argument: Damit müssen auch und Monome modulo sein, d. h. auch deren sonstige Koeffizienten sind alle durch teilbar. Insbesondere die konstanten Terme von und sind jeweils durch teilbar. Wegen folgt mit dem Cauchy-Produkt, dass der konstante Term von durch teilbar ist – Widerspruch dazu, dass das Kriterium für erfüllt ist. Damit muss irreduzibel in sein. Mit dem Lemma von Gauß folgt, dass auch irreduzibel im Quotientenkörper, sprich in , ist. Und das ist, was zu zeigen war.

Betrachtet man allgemein Polynome über einem faktoriellen Ring , so muss das Modulo-Argument durch einen geeigneten Homomorphismus ersetzt werden, der auf seine entsprechende Restklasse in abbildet. Da faktoriell ist und ein Primelement, lässt sich der Homomorphismus leicht finden. Die Linearität erlaubt dann analog die Folgerung, dass und jeweils selbst auf ein Monom abgebildet werden.[3]

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Eisenstein: Über die Irreductibilität und einige andere Eigenschaften der Gleichung, von welcher die Theilung der ganzen Lemniscate abhängt. Journal für die reine und angewandte Mathematik, Band 39, 1850, S. 160–179.
  2. Lemmermeyer: Reciprocity Laws. Springer Verlag 2000, S. 274.
  3. a b Jürgen Wolfart: Einführung in die Algebra und Zahlentheorie. Vieweg Verlag, 1996, Seite 143, ISBN 978-3528072865.