Itō-Formel

Van Wikipedia, de gratis encyclopedie

Die Itō-Formel (auch Itō-Döblin-Formel; selten auch Lemma von Itō), benannt nach dem japanischen Mathematiker Itō Kiyoshi, ist eine zentrale Aussage in der stochastischen Analysis. In seiner einfachsten Form ist es eine Integraldarstellung für stochastische Prozesse, die Funktionen eines Wiener-Prozesses sind. Es entspricht damit der Kettenregel bzw. Substitutionsregel der klassischen Differential- und Integralrechnung.

Itô publizierte 1951 einen Beweis.[1]

Version für Wiener-Prozesse

[Bearbeiten | Quelltext bearbeiten]

Sei ein (Standard-)Wiener-Prozess und eine zweimal stetig differenzierbare Funktion. Dann gilt

Dabei ist das erste Integral als Itō-Integral und das zweite Integral als ein gewöhnliches Riemann-Integral (über die stetigen Pfade des Integranden) zu verstehen.

Für den durch für definierten Prozess lautet diese Darstellung in Differentialschreibweise

Version für Itō-Prozesse

[Bearbeiten | Quelltext bearbeiten]

Ein stochastischer Prozess heißt Itō-Prozess, falls

für zwei stochastische Prozesse , gilt (genaueres dazu unter stochastische Integration). In Differentialschreibweise:

Ist eine in der ersten Komponente einmal und in der zweiten zweimal stetig differenzierbare Funktion, so ist auch der durch definierte Prozess ein Itō-Prozess, und es gilt[2]

Hierbei bezeichnen und die partiellen Ableitungen der Funktion nach der ersten bzw. zweiten Variablen. Die zweite Darstellung folgt aus der ersten durch Einsetzen von und Zusammenfassen der - und -Terme.

Mehrdimensionale Version

[Bearbeiten | Quelltext bearbeiten]

Die Formel lässt sich auf Itō-Prozesse verallgemeinern. Sei in in der ersten und in den restlichen Variablen. Definiere dann gilt

Version für Semimartingale

[Bearbeiten | Quelltext bearbeiten]

Sei ein -wertiges Semimartingal und sei . Dann ist wieder ein Semimartingal und es gilt

Hierbei ist der linksseitige Grenzwert und der zugehörige Sprungprozess. Mit wird die quadratische Kovariation der stetigen Anteile der Komponenten und bezeichnet. Falls ein stetiges Semimartingal ist, verschwindet die letzte Summe in der Formel und es gilt .

Schreibt man den Ausdruck aus, so erhält man für eine Funktion die Form

wobei .

Das Integrationsgebiet bedeutet .

Für das Stratonowitsch-Integral

[Bearbeiten | Quelltext bearbeiten]

Sei ein -Semimartingal und , dann ist ein Semimartingal und es gilt[3]

Version für Funktionen mit beschränkter quadratischer Variation

[Bearbeiten | Quelltext bearbeiten]

Hans Föllmer erweiterte die Formel von Itō auf (deterministische) Funktionen mit beschränkter quadratischer Variation.[4]

Sei eine reell-wertige Funktion und eine Càdlàg-Funktion mit endlicher quadratischer Variation. Dann gilt

  • Für gilt .
eine Lösung der stochastischen Differentialgleichung von Black und Scholes
ist.
Hierzu wählt man , also .
Dann ergibt die Formel mit :
  • Ist ein -dimensionaler Wiener-Prozess und zweimal stetig differenzierbar, dann gilt für
,
wobei den Gradienten und den Laplace-Operator von bezeichnen.

Unendlich-dimensionale Itō-Formeln

[Bearbeiten | Quelltext bearbeiten]

Es gibt verschiedene Varianten von Itō-Formeln für unendlich-dimensionale Räume (z. B. Pardoux[5], Gyöngy-Krylow[6], Brzezniak-van Neerven-Veraar-Weis[7]).

  • Philip E. Protter: Stochastic Integration and Differential Equations (2nd edition), Springer, 2004, ISBN 3-540-00313-4.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Kiyoshi Itô: On a formula concerning stochastic differentials. In: Nagoya Math. J. Band 3, 1951, S. 55–65 (projecteuclid.org).
  2. Hui-Hsiung Kuo: Introduction to Stochastic Integration. Springer, 2006, ISBN 978-0387-28720-1, S. 103 (eingeschränkte Vorschau in der Google-Buchsuche).
  3. Philip E. Protter: Stochastic Integration and Differential Equations. Hrsg.: Springer. 2004, ISBN 3-540-00313-4, S. 277–278.
  4. Hans Föllmer: Calcul d'Ito sans probabilités. In: Séminaire de probabilités de Strasbourg. Band 15, 1981, S. 143–144 (numdam.org).
  5. E. Pardoux, E: Équations aux dérivées partielles stochastiques de type monotone. In: Séminaire Jean Leray. Nr. 3, 1974 (numdam.org).
  6. I. Gyöngy und N. V. Krylov: Ito formula in banach spaces. In: Springer, Berlin, Heidelberg (Hrsg.): Arató, M., Vermes, D., Balakrishnan, A.V. (eds) Stochastic Differential Systems. Band 36, 1981, doi:10.1007/BFb0006409.
  7. Z. Brzezniak, J. M. A. M. van Neerven, M. C. Veraar und L. Weis: Ito's formula in UMD Banach spaces and regularity of solutions of the Zakai equation. 2008.