Radonmaß

Van Wikipedia, de gratis encyclopedie

Das Radonmaß oder Radon-Maß ist ein Begriff aus dem mathematischen Teilgebiet der Maßtheorie. Es handelt sich um ein spezielles Maß auf der Borelschen σ-Algebra eines Hausdorff-Raums mit bestimmten Regularitätseigenschaften. Der Begriff wird in der Fachliteratur jedoch nicht einheitlich verwendet. Die in diesem Artikel präferierte Definition ist (laut Jürgen Elstrodt) „besonders vorteilhaft für die Behandlung des Darstellungssatzes von Riesz“.[1] Benannt sind die Radonmaße nach dem Mathematiker Johann Radon.[2]

Eine Definition (von Laurent Schwartz[3] und Jürgen Elstrodt[4]) lautet:

Sei topologischer Raum, der hausdorff ist. Ein Radonmaß auf ist ein Maß auf der Borelschen σ-Algebra , das lokal endlich und von innen regulär ist.

Lokal-endlich bedeutet: Für jedes existiert eine Umgebung mit .

Von innen regulär bedeutet:

für alle .

Weitere Bedeutungen

[Bearbeiten | Quelltext bearbeiten]

Teilweise wird zusätzlich zur obigen Definition noch gefordert, dass das Maß endlich sein soll.

Manche Autoren verwenden den Begriff "Radon-Maß" für ein Borel-Maß, bei dem jede kompakte Menge endliches Maß hat.[5] Dabei bezeichnen sie ein Maß als Borel-Maß, wenn es auf der Borelschen σ-Algebra eines topologischen Raumes definiert ist. Für einen lokal kompakten Hausdorff-Raum ist dieses Radon-Maß dann lokal endlich und entspricht somit in diesem Sonderfall einem Borel-Maß (im Sinne eines lokal endlichen Maßes auf der Borelschen σ-Algebra eines Hausdorff-Raumes).

Im Englischen werden lokal endliche Maße auf der Borelschen σ-Algebra eines Hausdorff-Raumes, die von innen regulär sind (also Radon-Maße im Sinne der hier gegebenen Definition) als tight measures bezeichnet[6]. Sie entsprechen dann aber nicht den straffen Maßen, wie sie im deutschen Sprachraum gebräuchlich sind.

Soweit nicht explizit anders erwähnt, behandelt dieser Artikel die Eigenschaften von Radon-Maßen im Sinne der oben gegebenen Definition.

Beispiele für Maße mit dieser Regularitätseigenschaft sind:

Zu dem Begriff des Radonmaßes kommt man in natürlicher Weise, wenn man positive lineare Funktionale“ (sogenannte Radon-Integrale) auf (den stetigen, reellwertigen Funktionen mit kompaktem Träger) auf einem lokalkompakten Hausdorff-Raum untersucht. In solchen lokalkompakten Räumen ist die Eigenschaft der Lokal-Endlichkeit eines Maßes äquivalent zu Endlichkeit des Maßes auf kompakten Mengen (siehe Borelmaß).

  • Sei ein polnischer Raum, der Raum der Borel-Wahrscheinlichkeitsmaße über und . Dann ist ein Radonmaß.[7]

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Jürgen Elstrodt: Maß- und Integrationstheorie. 7. Auflage. Springer, Berlin/Heidelberg 2011, ISBN 978-3-642-17904-4, S. vii.
  2. Radon, Johann Karl August. In: Guido Walz (Hrsg.): Lexikon der Mathematik. 1. Auflage. Spektrum Akademischer Verlag, Mannheim/Heidelberg 2000, ISBN 3-8274-0439-8.
  3. Laurent Schwartz: Radon measures on arbitrary topological spaces and cylindrical measures (= Studies in Mathematics. Bd. 6). Oxford University Press, London 1973, ISBN 0-19-560516-0.
  4. Elstrodt: Maß- und Integrationstheorie. 2009, S. 313.
  5. Eric W. Weisstein: Radon Measure. In: MathWorld (englisch).
  6. Tight measure. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 1-55608-010-7 (englisch, encyclopediaofmath.org).
  7. Gopinath Kallianpur und Jie Xiong: Stochastic differential equations in infinite-dimensional spaces: Chapter 2. Probability measures. 1995, S. 54, doi:10.1214/lnms/1215451870 (projecteuclid.org).