Comparison of commercial battery types

From Wikipedia the free encyclopedia

This is a list of commercially-available battery types summarizing some of their characteristics for ready comparison.

Common characteristics[edit]

Cell chemistry Also known as Electrode Re­charge­able Com­mercial­ized Voltage Energy density Specific power Cost Discharge efficiency Self-discharge rate Shelf life
Anode Electrolyte Cathode Cutoff Nominal 100% SOC by mass by volume
year V V V MJ/kg
(Wh/kg)
MJ/L
(Wh/L)
W/kg Wh/$
($/kWh)
% %/month years
Lead–acid SLA
VRLA
PbAc
Lead H2SO4 Lead dioxide Yes 1881[1] 1.75[2] 2.1[2] 2.23–2.32[2] 0.11–0.14
(30–40)[2]
0.22–0.27
(60–75)[2]
180[2] 5.44–13.99
(72–184)
[2]
50–92[2] 3–20[2]
Zinc–carbon Carbon–zinc Zinc NH4Cl Manganese (IV) oxide No 1898[3] 0.75–0.9[3] 1.5[3] 0.13
(36)[3]
0.33
(92)[3]
10–27[3] 2.49
(402)
[3]
50–60[3] 0.32[3] 3–5[4]
Zinc–air PR KOH Oxygen No 1932[5] 0.9[5] 1.45–1.65[5] 1.59
(442)[5]
6.02
(1,673)[5]
100[5] 2.18
(460)
[5]
60–70[5] 0.17[5] 3[5]
Mercury oxide–zinc Mercuric oxide
Mercury cell
NaOH/KOH Mercuric oxide No 1942–[6] 1996[7] 0.9[8] 1.35[8] 0.36–0.44
(99–123)[8]
1.1–1.8
(300–500)[8]
2[6]
Alkaline Zn/MnO
2

LR
KOH Manganese (IV) oxide No 1949[9] 0.9[10] 1.5[11] 1.6[10] 0.31–0.68
(85–190)[12]
0.90–1.56
(250–434)[12]
50[12] 0.39
(2574)
[12]
45–85[12] 0.17[12] 5–10[4]
Rechargeable alkaline RAM KOH Yes 1992[13] 0.9[14] 1.57[14] 1.6[14] <1[13]
Silver-oxide SR NaOH/KOH Silver oxide No 1960[15] 1.2[16] 1.55[16] 1.6[17] 0.47
(130)[17]
1.8
(500)[17]
Nickel–zinc NiZn KOH Nickel oxide hydroxide Yes 2009[13] 0.9[13] 1.65[13] 1.85[13] 13[13]
Nickel–iron NiFe Iron KOH Yes 1901[18] 0.75[19] 1.2[19] 1.65[19] 0.07–0.09
(19–25)[20]
0.45
(125)[21]
100 3.31–4.41
(227–302)
[1]
20–30 30–[22] 50[23][24]
Nickel–cadmium NiCd
NiCad
Cadmium KOH Yes c. 1960[25] 0.9–1.05[26] 1.2[27] 1.3[26] 0.11
(30)[27]
0.36
(100)[27]
150–200[28] 10[13]
Nickel–hydrogen NiH
2

Ni-H
2
Hydrogen KOH Yes 1975[29] 1.0[30] 1.55[28] 0.16–0.23
(45–65)[28]
0.22
(60)[31]
150–200[28] 5[31]
Nickel–metal hydride NiMH
Ni-MH
Metal hydride KOH| Yes 1990[1] 0.9–1.05[26] 1.2[11] 1.3[26] 0.36
(100)[11]
1.44
(401)[32]
250–1,000 2.65
(378)
[1]
30[33]
Low self-discharge nickel–metal hydride LSD NiMH Yes 2005[34] 0.9–1.05[26] 1.2 1.3[26] 0.34
(95)[35]
1.27
(353)[36]
250–1,000 0.42[33]
Lithium–manganese dioxide Lithium
Li-MnO
2

CR
Li-Mn
Lithium Manganese dioxide No 1976[37] 2[38] 3[11] 0.54–1.19
(150–330)[39]
1.1–2.6
(300–710)[39]
250–400[39] 1 5–10[39]
Lithium–carbon monofluoride Li-(CF)
x

BR
Carbon monofluoride No 1976[37] 2[40] 3[40] 0.94–2.81
(260–780)[39]
1.58–5.32
(440–1,478)[39]
50–80[39] 0.2–0.3[41] 15[39]
Lithium–iron disulfide Li-FeS
2

FR
Iron disulfide No 1989[42] 0.9[42] 1.5[42] 1.8[42] 1.07
(297)[42]
2.1
(580)[43]
10-20[43]
Lithium–titanate Li
4
Ti
5
O
12

LTO
Lithium manganese oxide or Lithium nickel manganese cobalt oxide Yes 2008[44] 1.6–1.8[45] 2.3–2.4[45] 2.8[45] 0.22–0.40
(60–110)
0.64
(177)
3,000–5,100[46] 0.39
(2539)
[46]
85[46] 2–5[46] 10–20[46]
Lithium cobalt oxide LiCoO
2

ICR
LCO
Li‑cobalt[47]
Graphite LiPF6/LiBF4/ LiClO4 Lithium cobalt oxide Yes 1991[48] 2.5[49] 3.7[50] 4.2[49] 0.70
(195)[50]
2.0
(560)[50]
2.21
(453)
[1]
Lithium iron phosphate LiFePO
4

IFR
LFP
Li‑phosphate[47]
Lithium iron phosphate Yes 1996[51] 2[49] 3.2[50] 3.65[49] 0.32–0.58
(90–160)[50]
[52][53]
1.20
(333)[50][52]
200[54]–1,200[55] 4.5 20 years[56]
Lithium manganese oxide LiMn
2
O
4

IMR
LMO
Li‑manganese[47]
Lithium manganese oxide Yes 1999[1] 2.5[57] 3.9[50] 4.2[57] 0.54
(150)[50]
1.5
(420)[50]
2.21
(453)
[1]
Lithium nickel cobalt aluminium oxides LiNiCoAlO
2

NCA
NCR
Li‑aluminium[47]
Lithium nickel cobalt aluminium oxide Yes 1999 3.0[58] 3.6[50] 4.3[58] 0.79
(220)[50]
2.2
(600)[50]
Lithium nickel manganese cobalt oxide LiNi
x
Mn
y
Co
1-x-y
O
2

INR
NMC[47]
NCM[50]
Lithium nickel manganese cobalt oxide Yes 2008[59] 2.5[49] 3.6[50] 4.2[49] 0.74
(205)[50]
2.1
(580)[50]

^† Cost in USD, adjusted for inflation.

^‡ Typical. See Lithium-ion battery § Negative electrode for alternative electrode materials.

Rechargeable characteristics[edit]

Cell chemistry Charge efficiency Cycle durability
% # 100% depth of discharge (DoD) cycles
Lead–acid 50–92[2] 50–100[60] (500@40%DoD[2][60])
Rechargeable alkaline 5–100[13]
Nickel–zinc 100 to 50% capacity[13]
Nickel–iron 65–80 5,000
Nickel–cadmium 70–90 500[25]
Nickel–hydrogen 85 20,000[31]
Nickel–metal hydride 66 300–800[13]
Low self-discharge nickel–metal hydride battery 500–1,500[13]
Lithium cobalt oxide 90 500–1,000
Lithium–titanate 85–90 6,000–10,000 to 90% capacity[46]
Lithium iron phosphate 90 2,500[54]–12,000 to 80% capacity[61]
Lithium manganese oxide 90 300–700

Thermal runaway[edit]

Under certain conditions, some battery chemistries are at risk of thermal runaway, leading to cell rupture or combustion. As thermal runaway is determined not only by cell chemistry but also cell size, cell design and charge, only the worst-case values are reflected here.[62]

Cell chemistry Overcharge Overheat
Onset Onset Runaway Peak
SOC% °C °C °C/min
Lithium cobalt oxide 150[62] 165[62] 190[62] 440[62]
Lithium iron phosphate 100[62] 220[62] 240[62] 21[62]
Lithium manganese oxide 110[62] 210[62] 240[62] 100+[62]
Lithium nickel cobalt aluminium oxide 125[62] 140[62] 195[62] 260[62]
Lithium nickel manganese cobalt oxide 170[62] 160[62] 230[62] 100+[62]

NiCd vs. NiMH vs. Li-ion vs. Li–polymer vs. LTO[edit]

Types Cell Voltage Self-discharge Memory Cycles Times Temperature Weight
NiCd 1.2V 20%/month Yes Up to 800 -20 °C to 60 °C Heavy
NiMH 1.2V 30%/month Mild Up to 500 -20 °C to 70 °C Middle
Low Self Discharge NiMH 1.2V 3%/year–1%/month No 500–2,000 -20 °C to 70 °C Middle
Li-ion (LCO) 3.6V 5–10%/month No 500–1,000 -20 °C to 60 °C Light
LiFePO4 (LFP) 3.2V 2–5%/month No 2,500–12,000[61] -20 °C to 60 °C Light
LiPo (LCO) 3.7V 5–10%/month No 500–1,000 -20 °C to 60 °C Lightest
Li–Ti (LTO) 2.4V 2–5%/month[46] No 6,000–20,000 -40 °C to 75 °C Light

[63]

See also[edit]

References[edit]

  1. ^ a b c d e f g "mpoweruk.com: Accumulator and battery comparisons (pdf)" (PDF). Retrieved 2016-02-28.
  2. ^ a b c d e f g h i j k "All About Batteries, Part 3: Lead-Acid Batteries". Retrieved 2016-02-26.
  3. ^ a b c d e f g h i "All About Batteries, Part 5: Carbon Zinc Batteries". Retrieved 2016-02-26.
  4. ^ a b "Energizer Non-Rechargeable Batteries: Frequently Asked Questions" (PDF). Archived from the original (PDF) on 2016-04-04. Retrieved 2016-02-26.
  5. ^ a b c d e f g h i j "All About Batteries, Part 6: Zinc-Air". Retrieved 2016-03-01.
  6. ^ a b Narayan, R.; Viswanathan, B. (1998). Chemical And Electrochemical Energy Systems. Universities Press. p. 92. ISBN 9788173710698.
  7. ^ "Mercury Use in Batteries". Archived from the original on 2012-11-29. Retrieved 2016-03-01.
  8. ^ a b c d Crompton, Thomas Roy (2000). Batteries Reference Book. Newnes. ISBN 9780750646253. Retrieved 2016-03-01.
  9. ^ Herbert, W. S. (1952). "The Alkaline Manganese Dioxide Dry Cell". Journal of the Electrochemical Society. 99 (August 1952): 190C. doi:10.1149/1.2779731.
  10. ^ a b "Alkaline Manganese Dioxide Handbook and Application Manual" (PDF). Archived from the original (PDF) on 2010-12-16. Retrieved 2016-03-01.
  11. ^ a b c d "Primary and Rechargeable Battery Chemistries with Energy Density". Retrieved 2016-02-26.
  12. ^ a b c d e f "All About Batteries, Part 4: Alkaline Batteries". Retrieved 2016-02-26.
  13. ^ a b c d e f g h i j k l "Rechargeable Batteries — compared and explained in detail". Retrieved 2016-02-28.
  14. ^ a b c "Data Sheet of Pure Energy XL Rechargeable Alkaline Cells" (PDF). Retrieved 2016-03-01.
  15. ^ "The history of the battery: 2) Primary batteries". Archived from the original on 2018-05-26. Retrieved 2016-03-01.
  16. ^ a b "Silver Primary Cells & Batteries" (PDF). Archived from the original (PDF) on December 15, 2009. Retrieved 2016-03-01.
  17. ^ a b c "ProCell Silver Oxide battery chemistry". Duracell. Archived from the original on 2009-12-20. Retrieved 2009-04-21.
  18. ^ "Edison's non-toxic nickel-iron battery revived in ultrafast form". Wired UK. Retrieved 2016-02-28.
  19. ^ a b c "Nickel-Iron Power 6 cell" (PDF). Archived from the original on 2012-03-07. Retrieved 2017-03-19.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  20. ^ "Energy Density from NREL Testing by Iron Edison". Archived from the original (PDF) on 2016-10-20. Retrieved 2016-02-26.
  21. ^ Jha, A.R. (2012-06-05). Next-Generation Batteries and Fuel Cells for Commercial, Military, and Space Applications. CRC Press. p. 28. ISBN 978-1439850664.
  22. ^ "Nickel Iron Batteries". www.mpoweruk.com.
  23. ^ "A description of the Chinese nickel–iron battery from BeUtilityFree" (PDF). Archived from the original (PDF) on July 25, 2021.
  24. ^ "NiFe FAQ's". www.beutilityfree.com. Archived from the original on 2016-02-21. Retrieved 2016-02-27.
  25. ^ a b "Nickel Cadmium Batteries". Electropaedia. Woodbank Communications. Retrieved 2016-02-29.
  26. ^ a b c d e f "Testing NiCd and NiMH Batteries". Retrieved 2016-03-01.
  27. ^ a b c Arther, Miller (26 February 2016). "Ons werk". Diensten (in Dutch). Retrieved 2016-02-26.
  28. ^ a b c d "Optimization of spacecraft electrical power subsystems" (PDF). Retrieved 2016-02-29.
  29. ^ "Nickel-Hydrogen Battery Technology—Development and Status" (PDF). Archived from the original (PDF) on 2009-03-18. Retrieved 2012-08-29.
  30. ^ Thaller, Lawrence H.; Zimmerman, Albert H. (2003). Nickel-hydrogen Life Cycle Testing. AIAA. ISBN 9781884989131.
  31. ^ a b c Arther, Miller (23 May 2014). "Ons werk". DoubleSmart (in Dutch). Retrieved 12 January 2019.
  32. ^ "Ansmann AA – NiMH 2700mAh datasheet" (PDF). Retrieved 2016-03-02.
  33. ^ a b "AA Battery Considerations". Retrieved 2016-03-01.
  34. ^ "General Description". Eneloop.info. Sanyo. Archived from the original on 2012-09-02. Retrieved 2015-08-06.
  35. ^ "Metero Webinar 2". Archived from the original on 2016-03-11. Retrieved 2016-03-02.
  36. ^ "SANYO new Eneloop Batteries Remains Energy Longer" (PDF). Archived from the original (PDF) on 2016-03-04. Retrieved 2016-03-02.
  37. ^ a b Dyer, Chris K; Moseley, Patrick T; Ogumi, Zempachi; Rand, David A. J.; Scrosati, Bruno (2013). Encyclopedia of Electrochemical Power Sources. Newnes. p. 561. ISBN 978-0444527455. Retrieved 2016-03-03.
  38. ^ "Lithium Manganese Dioxide Batteries CR2430" (PDF). Retrieved 2016-03-01.
  39. ^ a b c d e f g h "Li/CFx Batteries: The Renaissance" (PDF). Retrieved 2019-02-24.
  40. ^ a b "Chapter 1 Overview - Industrial Devices and Solutions" (PDF). Archived from the original (PDF) on 2016-03-06. Retrieved 2016-03-03.
  41. ^ "Lithium Carbon-monofluoride (BR) Coin Cells and FB Encapsulated Lithium Coin Cells". Archived from the original on 2015-03-30. Retrieved 2016-03-03.
  42. ^ a b c d e "Lithium Iron Disulfide Handbook and Application Manual" (PDF). Archived from the original (PDF) on 2006-03-17. Retrieved 2016-03-03.
  43. ^ a b "Energizer's Lithium Iron Disulfide – The best of all worlds for the most demanding applications" (PDF). Archived from the original (PDF) on 2016-03-06. Retrieved 2016-03-03.
  44. ^ "LTO Anode Material for Lithium-ion Battery Manufacturing". Retrieved 2018-12-16.
  45. ^ a b c Gotcher, Alan J. (29 November 2006). "Altair EDTA Presentation" (PDF). Altairnano.com. Archived from the original (PDF) on 16 June 2007.
  46. ^ a b c d e f g "All About Batteries, Part 12: Lithium Titanate (LTO)". Retrieved 2018-12-16.
  47. ^ a b c d e "Battery chemistry FINALLY explained". Archived from the original on 2016-02-12. Retrieved 2016-02-26.
  48. ^ "Hooked on lithium". The Economist. Retrieved 2016-02-26.
  49. ^ a b c d e f "Comparison Common Lithium Technologies" (PDF). Archived from the original (PDF) on 2016-12-22. Retrieved 2016-12-21.
  50. ^ a b c d e f g h i j k l m n o p "Lithium Battery Technologies". Retrieved 2016-02-26.
  51. ^ "LiFePO
    4
    : A Novel Cathode Material for Rechargeable Batteries", A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Electrochemical Society Meeting Abstracts, 96-1, May, 1996, pp 73
  52. ^ a b "Great Power Group, Square lithium-ion battery". Archived from the original on 2020-08-03. Retrieved 2019-12-31.
  53. ^ "Lithium Battery Mystery: This 100Ah LiFePO4 Energy Density is Off the Charts". YouTube. Retrieved 2019-12-31.
  54. ^ a b "Archived copy" (PDF). Archived from the original (PDF) on 2016-09-21. Retrieved 2016-04-20.{{cite web}}: CS1 maint: archived copy as title (link)
  55. ^ "Datasheet HeadWay LiFePO4 38120" (PDF). Retrieved 2020-04-08.
  56. ^ "Which battery type is right for you?". Retrieved 2021-08-11.
  57. ^ a b "Lithium-ion Battery Overview" (PDF). Lighting Global (May 2012, Issue 10). Archived from the original (PDF) on 2014-06-17. Retrieved 2016-03-01.
  58. ^ a b "Lithium nickel cobalt aluminium oxide". Retrieved 2016-03-01.
  59. ^ "Battery Technology". Retrieved 2016-02-26.
  60. ^ a b electricrider.com: Lithium Batteries Citat: Citat: "...The cycle life of sealed lead-acid is directly related to the depth of discharge. The typical number of discharge/charge cycles at 25 °C (77 °F) with respect to the depth of discharge is: * 50–100 cycles with 100% depth of discharge (full discharge) * 150–250 cycles with 70% depth of discharge (deep discharge) * 300–500 cycles with 50% depth of discharge (partial discharge) * 800 and more cycles with 30% depth of discharge (shallow discharge)..."
  61. ^ a b "CATL wants to deliver LFP batteries for ESS at 'multi-gigawatt-hour scale' into Europe and US-CATL". catlbattery.com. Contemporary Amperex Technology Co. Limited (CATL). Archived from the original on 4 April 2023. Retrieved 3 October 2020.
  62. ^ a b c d e f g h i j k l m n o p q r s t u Doughty, Dan; Roth, E. Peter (2012). "A General Discussion of Li Ion Battery Safety" (PDF). The Electrochemical Society Interface. 21 (Summer 2012): 37. Bibcode:2012ECSIn..21b..37D. doi:10.1149/2.F03122if. Retrieved 2016-02-27.
  63. ^ Resende, Caio (3 November 2017). "Best Power Tool Battery Types: NiCd VS NiMH VS li-ion VS li-polymer".