Complete topological vector space

From Wikipedia the free encyclopedia

In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by Cauchy nets or Cauchy filters, which are generalizations of Cauchy sequences, while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for all TVSs, including those that are not metrizable or Hausdorff.

Completeness is an extremely important property for a topological vector space to possess. The notions of completeness for normed spaces and metrizable TVSs, which are commonly defined in terms of completeness of a particular norm or metric, can both be reduced down to this notion of TVS-completeness – a notion that is independent of any particular norm or metric. A metrizable topological vector space with a translation invariant metric[note 1] is complete as a TVS if and only if is a complete metric space, which by definition means that every -Cauchy sequence converges to some point in Prominent examples of complete TVSs that are also metrizable include all F-spaces and consequently also all Fréchet spaces, Banach spaces, and Hilbert spaces. Prominent examples of complete TVS that are (typically) not metrizable include strict LF-spaces such as the space of test functions with it canonical LF-topology, the strong dual space of any non-normable Fréchet space, as well as many other polar topologies on continuous dual space or other topologies on spaces of linear maps.

Explicitly, a topological vector spaces (TVS) is complete if every net, or equivalently, every filter, that is Cauchy with respect to the space's canonical uniformity necessarily converges to some point. Said differently, a TVS is complete if its canonical uniformity is a complete uniformity. The canonical uniformity on a TVS is the unique[note 2] translation-invariant uniformity that induces on the topology This notion of "TVS-completeness" depends only on vector subtraction and the topology of the TVS; consequently, it can be applied to all TVSs, including those whose topologies can not be defined in terms metrics or pseudometrics. A first-countable TVS is complete if and only if every Cauchy sequence (or equivalently, every elementary Cauchy filter) converges to some point.

Every topological vector space even if it is not metrizable or not Hausdorff, has a completion, which by definition is a complete TVS into which can be TVS-embedded as a dense vector subspace. Moreover, every Hausdorff TVS has a Hausdorff completion, which is necessarily unique up to TVS-isomorphism. However, as discussed below, all TVSs have infinitely many non-Hausdorff completions that are not TVS-isomorphic to one another.

Definitions[edit]

This section summarizes the definition of a complete topological vector space (TVS) in terms of both nets and prefilters. Information about convergence of nets and filters, such as definitions and properties, can be found in the article about filters in topology.

Every topological vector space (TVS) is a commutative topological group with identity under addition and the canonical uniformity of a TVS is defined entirely in terms of subtraction (and thus addition); scalar multiplication is not involved and no additional structure is needed.

Canonical uniformity[edit]

The diagonal of is the set[1]

and for any the canonical entourage/vicinity around is the set
where if then contains the diagonal

If is a symmetric set (that is, if ), then is symmetric, which by definition means that holds where and in addition, this symmetric set's composition with itself is:

If is any neighborhood basis at the origin in then the family of subsets of

is a prefilter on If is the neighborhood filter at the origin in then forms a base of entourages for a uniform structure on that is considered canonical.[2] Explicitly, by definition, the canonical uniformity on induced by [2] is the filter on generated by the above prefilter:
where denotes the upward closure of in The same canonical uniformity would result by using a neighborhood basis of the origin rather the filter of all neighborhoods of the origin. If is any neighborhood basis at the origin in then the filter on generated by the prefilter is equal to the canonical uniformity induced by

Cauchy net[edit]

The general theory of uniform spaces has its own definition of a "Cauchy prefilter" and "Cauchy net". For the canonical uniformity on these definitions reduce down to those given below.

Suppose is a net in and is a net in The product becomes a directed set by declaring if and only if and Then

denotes the (Cartesian) product net, where in particular If then the image of this net under the vector addition map denotes the sum of these two nets:[3]
and similarly their difference is defined to be the image of the product net under the vector subtraction map :
In particular, the notation denotes the -indexed net and not the -indexed net since using the latter as the definition would make the notation useless.

A net in a TVS is called a Cauchy net[4] if

Explicitly, this means that for every neighborhood of in there exists some index such that for all indices that satisfy and It suffices to check any of these defining conditions for any given neighborhood basis of in A Cauchy sequence is a sequence that is also a Cauchy net.

If then in and so the continuity of the vector subtraction map which is defined by guarantees that in where and This proves that every convergent net is a Cauchy net. By definition, a space is called complete if the converse is also always true. That is, is complete if and only if the following holds:

whenever is a net in then converges (to some point) in if and only if in

A similar characterization of completeness holds if filters and prefilters are used instead of nets.

A series is called a Cauchy series (respectively, a convergent series) if the sequence of partial sums is a Cauchy sequence (respectively, a convergent sequence).[5] Every convergent series is necessarily a Cauchy series. In a complete TVS, every Cauchy series is necessarily a convergent series.

Cauchy filter and Cauchy prefilter[edit]

A prefilter on a topological vector space is called a Cauchy prefilter[6] if it satisfies any of the following equivalent conditions:

  1. in
    • The family is a prefilter.
    • Explicitly, means that for every neighborhood of the origin in there exist such that
  2. in
    • The family is a prefilter equivalent to (equivalence means these prefilters generate the same filter on ).
    • Explicitly, means that for every neighborhood of the origin in there exists some such that
  3. For every neighborhood of the origin in contains some -small set (that is, there exists some such that ).[6]
    • A subset is called -small or small of order [6] if
  4. For every neighborhood of the origin in there exists some and some such that [6]
    • This statement remains true if "" is replaced with ""
  5. Every neighborhood of the origin in contains some subset of the form where and

It suffices to check any of the above conditions for any given neighborhood basis of in A Cauchy filter is a Cauchy prefilter that is also a filter on

If is a prefilter on a topological vector space and if then in if and only if and is Cauchy.[3]

Complete subset[edit]

For any a prefilter on is necessarily a subset of ; that is,

A subset of a TVS is called a complete subset if it satisfies any of the following equivalent conditions:

  1. Every Cauchy prefilter on converges to at least one point of
    • If is Hausdorff then every prefilter on will converge to at most one point of But if is not Hausdorff then a prefilter may converge to multiple points in The same is true for nets.
  2. Every Cauchy net in converges to at least one point of
  3. is a complete uniform space (under the point-set topology definition of "complete uniform space") when is endowed with the uniformity induced on it by the canonical uniformity of

The subset is called a sequentially complete subset if every Cauchy sequence in (or equivalently, every elementary Cauchy filter/prefilter on ) converges to at least one point of

Importantly, convergence to points outside of does not prevent a set from being complete: If is not Hausdorff and if every Cauchy prefilter on converges to some point of then will be complete even if some or all Cauchy prefilters on also converge to points(s) in In short, there is no requirement that these Cauchy prefilters on converge only to points in The same can be said of the convergence of Cauchy nets in

As a consequence, if a TVS is not Hausdorff then every subset of the closure of in is complete because it is compact and every compact set is necessarily complete. In particular, if is a proper subset, such as for example, then would be complete even though every Cauchy net in (and also every Cauchy prefilter on ) converges to every point in including those points in that do not belong to This example also shows that complete subsets (and indeed, even compact subsets) of a non-Hausdorff TVS may fail to be closed. For example, if then if and only if is closed in

Complete topological vector space[edit]

A topological vector space is called a complete topological vector space if any of the following equivalent conditions are satisfied:

  1. is a complete uniform space when it is endowed with its canonical uniformity.
    • In the general theory of uniform spaces, a uniform space is called a complete uniform space if each Cauchy filter on converges to some point of in the topology induced by the uniformity. When is a TVS, the topology induced by the canonical uniformity is equal to 's given topology (so convergence in this induced topology is just the usual convergence in ).
  2. is a complete subset of itself.
  3. There exists a neighborhood of the origin in that is also a complete subset of [6]
    • This implies that every locally compact TVS is complete (even if the TVS is not Hausdorff).
  4. Every Cauchy prefilter on converges in to at least one point of
    • If is Hausdorff then every prefilter on will converge to at most one point of But if is not Hausdorff then a prefilter may converge to multiple points in The same is true for nets.
  5. Every Cauchy filter on converges in to at least one point of
  6. Every Cauchy net in converges in to at least one point of

where if in addition is pseudometrizable or metrizable (for example, a normed space) then this list can be extended to include:

  1. is sequentially complete.

A topological vector space is sequentially complete if any of the following equivalent conditions are satisfied:

  1. is a sequentially complete subset of itself.
  2. Every Cauchy sequence in converges in to at least one point of
  3. Every elementary Cauchy prefilter on converges in to at least one point of
  4. Every elementary Cauchy filter on converges in to at least one point of

Uniqueness of the canonical uniformity[edit]

The existence of the canonical uniformity was demonstrated above by defining it. The theorem below establishes that the canonical uniformity of any TVS is the only uniformity on that is both (1) translation invariant, and (2) generates on the topology

Theorem[7] (Existence and uniqueness of the canonical uniformity) — The topology of any TVS can be derived from a unique translation-invariant uniformity. If is any neighborhood base of the origin, then the family is a base for this uniformity.

This section is dedicated to explaining the precise meanings of the terms involved in this uniqueness statement.

Uniform spaces and translation-invariant uniformities[edit]

For any subsets let[1]

and let
A non-empty family is called a base of entourages or a fundamental system of entourages if is a prefilter on satisfying all of the following conditions:

  1. Every set in contains the diagonal of as a subset; that is, for every Said differently, the prefilter is fixed on
  2. For every there exists some such that
  3. For every there exists some such that

A uniformity or uniform structure on is a filter on that is generated by some base of entourages in which case we say that is a base of entourages for

For a commutative additive group a translation-invariant fundamental system of entourages[7] is a fundamental system of entourages such that for every if and only if for all A uniformity is called a translation-invariant uniformity[7] if it has a base of entourages that is translation-invariant. The canonical uniformity on any TVS is translation-invariant.[7]

The binary operator satisfies all of the following:

  • If and then
  • Associativity:
  • Identity:
  • Zero:

Symmetric entourages

Call a subset symmetric if which is equivalent to This equivalence follows from the identity and the fact that if then if and only if For example, the set is always symmetric for every And because if and are symmetric then so is

Topology generated by a uniformity[edit]

Relatives

Let be arbitrary and let be the canonical projections onto the first and second coordinates, respectively.

For any define

where (respectively, ) is called the set of left (respectively, right) -relatives of (points in) Denote the special case where is a singleton set for some by:
If then Moreover, right distributes over both unions and intersections, meaning that if then and

Neighborhoods and open sets

Two points and are -close if and a subset is called -small if

Let be a base of entourages on The neighborhood prefilter at a point and, respectively, on a subset are the families of sets:

and the filters on that each generates is known as the neighborhood filter of (respectively, of ). Assign to every the neighborhood prefilter
and use the neighborhood definition of "open set" to obtain a topology on called the topology induced by or the induced topology. Explicitly, a subset is open in this topology if and only if for every there exists some such that that is, is open if and only if for every there exists some such that

The closure of a subset in this topology is:

Cauchy prefilters and complete uniformities

A prefilter on a uniform space with uniformity is called a Cauchy prefilter if for every entourage there exists some such that

A uniform space is called a complete uniform space (respectively, a sequentially complete uniform space) if every Cauchy prefilter (respectively, every elementary Cauchy prefilter) on converges to at least one point of when is endowed with the topology induced by

Case of a topological vector space

If is a topological vector space then for any and

and the topology induced on by the canonical uniformity is the same as the topology that started with (that is, it is ).

Uniform continuity[edit]

Let and be TVSs, and be a map. Then is uniformly continuous if for every neighborhood of the origin in there exists a neighborhood of the origin in such that for all if then

Suppose that is uniformly continuous. If is a Cauchy net in then is a Cauchy net in If is a Cauchy prefilter in (meaning that is a family of subsets of that is Cauchy in ) then is a Cauchy prefilter in However, if is a Cauchy filter on then although will be a Cauchy prefilter, it will be a Cauchy filter in if and only if is surjective.

TVS completeness vs completeness of (pseudo)metrics[edit]

Preliminaries: Complete pseudometric spaces[edit]

We review the basic notions related to the general theory of complete pseudometric spaces. Recall that every metric is a pseudometric and that a pseudometric is a metric if and only if implies Thus every metric space is a pseudometric space and a pseudometric space is a metric space if and only if is a metric.

If is a subset of a pseudometric space then the diameter of is defined to be

A prefilter on a pseudometric space is called a -Cauchy prefilter or simply a Cauchy prefilter if for each real there is some such that the diameter of is less than

Suppose is a pseudometric space. A net in is called a -Cauchy net or simply a Cauchy net if is a Cauchy prefilter, which happens if and only if

for every there is some such that if with and then

or equivalently, if and only if in This is analogous to the following characterization of the converge of to a point: if then in if and only if in

A Cauchy sequence is a sequence that is also a Cauchy net.[note 3]

Every pseudometric on a set induces the usual canonical topology on which we'll denote by ; it also induces a canonical uniformity on which we'll denote by The topology on induced by the uniformity is equal to A net in is Cauchy with respect to if and only if it is Cauchy with respect to the uniformity The pseudometric space is a complete (resp. a sequentially complete) pseudometric space if and only if is a complete (resp. a sequentially complete) uniform space. Moreover, the pseudometric space (resp. the uniform space ) is complete if and only if it is sequentially complete.

A pseudometric space (for example, a metric space) is called complete and is called a complete pseudometric if any of the following equivalent conditions hold:

  1. Every Cauchy prefilter on converges to at least one point of
  2. The above statement but with the word "prefilter" replaced by "filter."
  3. Every Cauchy net in converges to at least one point of
    • If is a metric on then any limit point is necessarily unique and the same is true for limits of Cauchy prefilters on
  4. Every Cauchy sequence in converges to at least one point of
    • Thus to prove that is complete, it suffices to only consider Cauchy sequences in (and it is not necessary to consider the more general Cauchy nets).
  5. The canonical uniformity on induced by the pseudometric is a complete uniformity.

And if addition is a metric then we may add to this list:

  1. Every decreasing sequence of closed balls whose diameters shrink to has non-empty intersection.[8]

Complete pseudometrics and complete TVSs[edit]

Every F-space, and thus also every Fréchet space, Banach space, and Hilbert space is a complete TVS. Note that every F-space is a Baire space but there are normed spaces that are Baire but not Banach.[9]

A pseudometric on a vector space is said to be a translation invariant pseudometric if for all vectors

Suppose is pseudometrizable TVS (for example, a metrizable TVS) and that is any pseudometric on such that the topology on induced by is equal to If is translation-invariant, then is a complete TVS if and only if is a complete pseudometric space.[10] If is not translation-invariant, then may be possible for to be a complete TVS but to not be a complete pseudometric space[10] (see this footnote[note 4] for an example).[10]

Theorem[11][12] (Klee) — Let be any[note 5] metric on a vector space such that the topology induced by on makes into a topological vector space. If is a complete metric space then is a complete-TVS.

Complete norms and equivalent norms[edit]

Two norms on a vector space are called equivalent if and only if they induce the same topology.[13] If and are two equivalent norms on a vector space then the normed space is a Banach space if and only if is a Banach space. See this footnote for an example of a continuous norm on a Banach space that is not equivalent to that Banach space's given norm.[note 6][13] All norms on a finite-dimensional vector space are equivalent and every finite-dimensional normed space is a Banach space.[14] Every Banach space is a complete TVS. A normed space is a Banach space (that is, its canonical norm-induced metric is complete) if and only if it is complete as a topological vector space.

Completions[edit]

A completion[15] of a TVS is a complete TVS that contains a dense vector subspace that is TVS-isomorphic to In other words, it is a complete TVS into which can be TVS-embedded as a dense vector subspace. Every TVS-embedding is a uniform embedding.

Every topological vector space has a completion. Moreover, every Hausdorff TVS has a Hausdorff completion, which is necessarily unique up to TVS-isomorphism. However, all TVSs, even those that are Hausdorff, (already) complete, and/or metrizable have infinitely many non-Hausdorff completions that are not TVS-isomorphic to one another.

Examples of completions[edit]

For example, the vector spa