Top View Square matrix whose entries are 1 along the anti-diagonal and 0 elsewhere
In mathematics , especially linear algebra , the exchange matrices (also called the reversal matrix , backward identity , or standard involutory permutation ) are special cases of permutation matrices , where the 1 elements reside on the antidiagonal and all other elements are zero. In other words, they are 'row-reversed' or 'column-reversed' versions of the identity matrix .
J 2 = ( 0 1 1 0 ) J 3 = ( 0 0 1 0 1 0 1 0 0 ) ⋮ J n = ( 0 0 ⋯ 0 1 0 0 ⋯ 1 0 ⋮ ⋮ ⋅ ⋅ j ˙ ⋮ ⋮ 0 1 ⋯ 0 0 1 0 ⋯ 0 0 ) {\displaystyle {\begin{aligned}J_{2}&={\begin{pmatrix}0&1\\1&0\end{pmatrix}}\\[4pt]J_{3}&={\begin{pmatrix}0&0&1\\0&1&0\\1&0&0\end{pmatrix}}\\&\quad \vdots \\[2pt]J_{n}&={\begin{pmatrix}0&0&\cdots &0&1\\0&0&\cdots &1&0\\\vdots &\vdots &\,{}_{_{\displaystyle \cdot }}\!\,{}^{_{_{\displaystyle \cdot }}}\!{\dot {\phantom {j}}}&\vdots &\vdots \\0&1&\cdots &0&0\\1&0&\cdots &0&0\end{pmatrix}}\end{aligned}}}
If J is an n × n exchange matrix, then the elements of J are J i , j = { 1 , i + j = n + 1 0 , i + j ≠ n + 1 {\displaystyle J_{i,j}={\begin{cases}1,&i+j=n+1\\0,&i+j\neq n+1\\\end{cases}}}
Premultiplying a matrix by an exchange matrix flips vertically the positions of the former's rows, i.e., ( 0 0 1 0 1 0 1 0 0 ) ( 1 2 3 4 5 6 7 8 9 ) = ( 7 8 9 4 5 6 1 2 3 ) . {\displaystyle {\begin{pmatrix}0&0&1\\0&1&0\\1&0&0\end{pmatrix}}{\begin{pmatrix}1&2&3\\4&5&6\\7&8&9\end{pmatrix}}={\begin{pmatrix}7&8&9\\4&5&6\\1&2&3\end{pmatrix}}.} Postmultiplying a matrix by an exchange matrix flips horizontally the positions of the former's columns, i.e., ( 1 2 3 4 5 6 7 8 9 ) ( 0 0 1 0 1 0 1 0 0 ) = ( 3 2 1 6 5 4 9 8 7 ) . {\displaystyle {\begin{pmatrix}1&2&3\\4&5&6\\7&8&9\end{pmatrix}}{\begin{pmatrix}0&0&1\\0&1&0\\1&0&0\end{pmatrix}}={\begin{pmatrix}3&2&1\\6&5&4\\9&8&7\end{pmatrix}}.} Exchange matrices are symmetric ; that is: J n T = J n . {\displaystyle J_{n}^{\mathsf {T}}=J_{n}.} For any integer k : J n k = { I if k is even, J n if k is odd. {\displaystyle J_{n}^{k}={\begin{cases}I&{\text{ if }}k{\text{ is even,}}\\[2pt]J_{n}&{\text{ if }}k{\text{ is odd.}}\end{cases}}} In particular, Jn is an involutory matrix ; that is, J n − 1 = J n . {\displaystyle J_{n}^{-1}=J_{n}.} The trace of Jn is 1 if n is odd and 0 if n is even. In other words: tr ( J n ) = 1 − ( − 1 ) n 2 = n mod 2 . {\displaystyle \operatorname {tr} (J_{n})={\frac {1-(-1)^{n}}{2}}=n{\bmod {2}}.} The determinant of Jn is: det ( J n ) = ( − 1 ) ⌊ n / 2 ⌋ = ( − 1 ) n ( n − 1 ) 2 {\displaystyle \det(J_{n})=(-1)^{\lfloor n/2\rfloor }=(-1)^{\frac {n(n-1)}{2}}} As a function of n , it has period 4, giving 1, 1, −1, −1 when n is congruent modulo 4 to 0, 1, 2, and 3 respectively. The characteristic polynomial of Jn is: det ( λ I − J n ) = ( λ − 1 ) ⌈ n / 2 ⌉ ( λ + 1 ) ⌊ n / 2 ⌋ = { [ ( λ + 1 ) ( λ − 1 ) ] n 2 if n is even, ( λ − 1 ) n + 1 2 ( λ + 1 ) n − 1 2 if n is odd, {\displaystyle \det(\lambda I-J_{n})=(\lambda -1)^{\lceil n/2\rceil }(\lambda +1)^{\lfloor n/2\rfloor }={\begin{cases}{\big [}(\lambda +1)(\lambda -1){\big ]}^{\frac {n}{2}}&{\text{ if }}n{\text{ is even,}}\\[4pt](\lambda -1)^{\frac {n+1}{2}}(\lambda +1)^{\frac {n-1}{2}}&{\text{ if }}n{\text{ is odd,}}\end{cases}}} its eigenvalues are 1 (with multiplicity ⌈ n / 2 ⌉ {\displaystyle \lceil n/2\rceil } ) and -1 (with multiplicity ⌊ n / 2 ⌋ {\displaystyle \lfloor n/2\rfloor } ).
The adjugate matrix of Jn is: adj ( J n ) = sgn ( π n ) J n . {\displaystyle \operatorname {adj} (J_{n})=\operatorname {sgn}(\pi _{n})J_{n}.} (where sgn is the sign of the permutation πk of k elements).
An exchange matrix is the simplest anti-diagonal matrix . Any matrix A satisfying the condition AJ = JA is said to be centrosymmetric . Any matrix A satisfying the condition AJ = JA is said to be persymmetric . Symmetric matrices A that satisfy the condition AJ = JA are called bisymmetric matrices. Bisymmetric matrices are both centrosymmetric and persymmetric.