A Fourier series (/ˈfʊrieɪ,-iər/[1]) is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series.[2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This application is possible because the derivatives of trigonometric functions fall into simple patterns. Fourier series cannot be used to approximate arbitrary functions, because most functions have infinitely many terms in their Fourier series, and the series do not always converge. Well-behaved functions, for example smooth functions, have Fourier series that converge to the original function. The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric functions, described in Common forms of the Fourier series below.
The study of the convergence of Fourier series focus on the behaviors of the partial sums, which means studying the behavior of the sum as more and more terms from the series are summed. The figures below illustrate some partial Fourier series results for the components of a square wave.
A square wave (represented as the blue dot) is approximated by its sixth partial sum (represented as the purple dot), formed by summing the first six terms (represented as arrows) of the square wave's Fourier series. Each arrow starts at the vertical sum of all the arrows to its left (i.e. the previous partial sum).
The first four partial sums of the Fourier series for a square wave. As more harmonics are added, the partial sums converge to (become more and more like) the square wave.
Function (in red) is a Fourier series sum of 6 harmonically related sine waves (in blue). Its Fourier transform is a frequency-domain representation that reveals the amplitudes of the summed sine waves.
Fourier series are closely related to the Fourier transform, a more general tool that can even find the frequency information for functions that are not periodic. Periodic functions can be identified with functions on a circle; for this reason Fourier series are the subject of Fourier analysis on a circle, usually denoted as or . The Fourier transform is also part of Fourier analysis, but is defined for functions on .
Since Fourier's time, many different approaches to defining and understanding the concept of Fourier series have been discovered, all of which are consistent with one another, but each of which emphasizes different aspects of the topic. Some of the more powerful and elegant approaches are based on mathematical ideas and tools that were not available in Fourier's time. Fourier originally defined the Fourier series for real-valued functions of real arguments, and used the sine and cosine functions in the decomposition. Many other Fourier-related transforms have since been defined, extending his initial idea to many applications and birthing an area of mathematics called Fourier analysis.
A Fourier series is a continuous, periodic function created by a summation of harmonically related sinusoidal functions. It has several different, but equivalent, forms, shown here as partial sums. But in theory The subscripted symbols, called coefficients, and the period, determine the function as follows:
Fourier series, amplitude-phase form
(Eq.1)
Fourier series, sine-cosine form
(Eq.2)
Fourier series, exponential form
(Eq.3)
The harmonics are indexed by an integer, which is also the number of cycles the corresponding sinusoids make in interval . Therefore, the sinusoids have:
Clearly these series can represent functions that are just a sum of one or more of the harmonic frequencies. The remarkable thing is that it can also represent the intermediate frequencies and/or non-sinusoidal functions because of the infinite number of terms. The amplitude-phase form is particularly useful for its insight into the rationale for the series coefficients. (see § Derivation) The exponential form is most easily generalized for complex-valued functions. (see § Complex-valued functions)
The equivalence of these forms requires certain relationships among the coefficients. For instance, the trigonometric identity:
The coefficients can be given/assumed, such as a music synthesizer or time samples of a waveform. In the latter case, the exponential form of Fourier series synthesizes a discrete-time Fourier transform where variable represents frequency instead of time.
But typically the coefficients are determined by frequency/harmonic analysis of a given real-valued function and represents time:
Fourier series analysis
(Eq.5)
The objective is for to converge to at most or all values of in an interval of length For the well-behaved functions typical of physical processes, equality is customarily assumed, and the Dirichlet conditions provide sufficient conditions.
The notation represents integration over the chosen interval. Typical choices are and . Some authors define because it simplifies the arguments of the sinusoid functions, at the expense of generality. And some authors assume that is also -periodic, in which case approximates the entire function. The scaling factor is explained by taking a simple case: Only the term of Eq.2 is needed for convergence, with and Accordingly Eq.5 provides:
The coefficients and can be understood and derived in terms of the cross-correlation between and a sinusoid at frequency . For a general frequency and an analysis interval the cross-correlation function:
Derivation of Eq.1
(Eq.8)
is essentially a matched filter, with template. The maximum of is a measure of the amplitude of frequency in the function , and the value of at the maximum determines the phase of that frequency. Figure 2 is an example, where is a square wave (not shown), and frequency is the harmonic. It is also an example of deriving the maximum from just two samples, instead of searching the entire function. Combining Eq.8 with Eq.4 gives:
The derivative of is zero at the phase of maximum correlation.
Therefore, computing and according to Eq.5 creates the component's phase of maximum correlation. And the component's amplitude is:
The notation is inadequate for discussing the Fourier coefficients of several different functions. Therefore, it is customarily replaced by a modified form of the function ( in this case), such as or , and functional notation often replaces subscripting:
In engineering, particularly when the variable represents time, the coefficient sequence is called a frequency domain representation. Square brackets are often used to emphasize that the domain of this function is a discrete set of frequencies.
Another commonly used frequency domain representation uses the Fourier series coefficients to modulate a Dirac comb:
where represents a continuous frequency domain. When variable has units of seconds, has units of hertz. The "teeth" of the comb are spaced at multiples (i.e. harmonics) of , which is called the fundamental frequency. can be recovered from this representation by an inverse Fourier transform:
The constructed function is therefore commonly referred to as a Fourier transform, even though the Fourier integral of a periodic function is not convergent at the harmonic frequencies.[B]
In this case, the Fourier coefficients are given by
It can be shown that the Fourier series converges to at every point where is differentiable, and therefore:
(Eq.9)
When , the Fourier series converges to 0, which is the half-sum of the left- and right-limit of s at . This is a particular instance of the Dirichlet theorem for Fourier series.
This example leads to a solution of the Basel problem.
In engineering applications, the Fourier series is generally assumed to converge except at jump discontinuities since the functions encountered in engineering are better-behaved than functions encountered in other disciplines. In particular, if is continuous and the derivative of (which may not exist everywhere) is square integrable, then the Fourier series of converges absolutely and uniformly to .[4] If a function is square-integrable on the interval , then the Fourier series converges to the function at almost everywhere. It is possible to define Fourier coefficients for more general functions or distributions, in which case point wise convergence often fails, and convergence in norm or weak convergence is usually studied.
Four partial sums (Fourier series) of lengths 1, 2, 3, and 4 terms, showing how the approximation to a square wave improves as the number of terms increases (animation)
Four partial sums (Fourier series) of lengths 1, 2, 3, and 4 terms, showing how the approximation to a sawtooth wave improves as the number of terms increases (animation)
Example of convergence to a somewhat arbitrary function. Note the development of the "ringing" (Gibbs phenomenon) at the transitions to/from the vertical sections.
The Fourier series is named in honor of Jean-Baptiste Joseph Fourier (1768–1830), who made important contributions to the study of trigonometric series, after preliminary investigations by Leonhard Euler, Jean le Rond d'Alembert, and Daniel Bernoulli.[C] Fourier introduced the series for the purpose of solving the heat equation in a metal plate, publishing his initial results in his 1807 Mémoire sur la propagation de la chaleur dans les corps solides (Treatise on the propagation of heat in solid bodies), and publishing his Théorie analytique de la chaleur (Analytical theory of heat) in 1822. The Mémoire introduced Fourier analysis, specifically Fourier series. Through Fourier's research the fact was established that an arbitrary (at first, continuous[5] and later generalized to any piecewise-smooth[6]) function can be represented by a trigonometric series. The first announcement of this great discovery was made by Fourier in 1807, before the French Academy.[7] Early ideas of decomposing a periodic function into the sum of simple oscillating functions date back to the 3rd century BC, when ancient astronomers proposed an empiric model of planetary motions, based on deferents and epicycles.
The heat equation is a partial differential equation. Prior to Fourier's work, no solution to the heat equation was known in the general case, although particular solutions were known if the heat source behaved in a simple way, in particular, if the heat source was a sine or cosine wave. These simple solutions are now sometimes called eigensolutions. Fourier's idea was to model a complicated heat source as a superposition (or linear combination) of simple sine and cosine waves, and to write the solution as a superposition of the corresponding eigensolutions. This superposition or linear combination is called the Fourier series.
This immediately gives any coefficient ak of the trigonometrical series for φ(y) for any function which has such an expansion. It works because if φ has such an expansion, then (under suitable convergence assumptions) the integral can be carried out term-by-term. But all terms involving for j ≠ k vanish when integrated from −1 to 1, leaving only the term.
In these few lines, which are close to the modern formalism used in Fourier series, Fourier revolutionized both mathematics and physics. Although similar trigonometric series were previously used by Euler, d'Alembert, Daniel Bernoulli and Gauss, Fourier believed that such trigonometric series could represent any arbitrary function. In what sense that is actually true is a somewhat subtle issue and the attempts over many years to clarify this idea have led to important discoveries in the theories of convergence, function spaces, and harmonic analysis.
When Fourier submitted a later competition essay in 1811, the committee (which included Lagrange, Laplace, Malus and Legendre, among others) concluded: ...the manner in which the author arrives at these equations is not exempt of difficulties and...his analysis to integrate them still leaves something to be desired on the score of generality and even rigour.[citation needed]
The Fourier series expansion of the sawtooth function (above) looks more complicated than the simple formula , so it is not immediately apparent why one would need the Fourier series. While there are many applications, Fourier's motivation was in solving the heat equation. For example, consider a metal plate in the shape of a square whose sides measure meters, with coordinates . If there is no heat source within the plate, and if three of the four sides are held at 0 degrees Celsius, while the fourth side, given by , is maintained at the temperature gradient degrees Celsius, for in , then one can show that the stationary heat distribution (or the heat distribution after a long period of time has elapsed) is given by
Here, sinh is the hyperbolic sine function. This solution of the heat equation is obtained by multiplying each term of Eq.9 by . While our example function seems to have a needlessly complicated Fourier series, the heat distribution is nontrivial. The function cannot be written as a closed-form expression. This method of solving the heat problem was made possible by Fourier's work.
Another application is to solve the Basel problem by using Parseval's theorem. The example generalizes and one may compute ζ(2n), for any positive integer n.
When the real and imaginary parts of a complex function are decomposed into their even and odd parts, there are four components, denoted below by the subscripts RE, RO, IE, and IO. And there is a one-to-one mapping between the four components of a complex time function and the four components of its complex frequency transform:[17]
From this, various relationships are apparent, for example:
The transform of a real-valued function is the conjugate symmetric function Conversely, a conjugate symmetric transform implies a real-valued time-domain.
The transform of an imaginary-valued function is the conjugate antisymmetric function and the converse is true.
The transform of a conjugate symmetric function is the real-valued function and the converse is true.
The transform of a conjugate antisymmetric function is the imaginary-valued function and the converse is true.
A doubly infinite sequence in is the sequence of Fourier coefficients of a function in if and only if it is a convolution of two sequences in . See [18]
We say that belongs to if is a 2π-periodic function on which is times differentiable, and its derivative is continuous.
If , then the Fourier coefficients of the derivative can be expressed in terms of the Fourier coefficients of the function , via the formula .
If , then . In particular, since for a fixed we have as , it follows that tends to zero, which means that the Fourier coefficients converge to zero faster than the kth power of n for any .
One of the interesting properties of the Fourier transform which we have mentioned, is that it carries convolutions to pointwise products. If that is the property which we seek to preserve, one can produce Fourier series on any compact group. Typical examples include those classical groups that are compact. This generalizes the Fourier transform to all spaces of the form L2(G), where G is a compact group, in such a way that the Fourier transform carries convolutions to pointwise products. The Fourier series exists and converges in similar ways to the [−π,π] case.
An alternative extension to compact groups is the Peter–Weyl theorem, which proves results about representations of compact groups analogous to those about finite groups.
If the domain is not a group, then there is no intrinsically defined convolution. However, if is a compactRiemannian manifold, it has a Laplace–Beltrami operator. The Laplace–Beltrami operator is the differential operator that corresponds to Laplace operator for the Riemannian manifold . Then, by analogy, one can consider heat equations on . Since Fourier arrived at his basis by attempting to solve the heat equation, the natural generalization is to use the eigensolutions of the Laplace–Beltrami operator as a basis. This generalizes Fourier series to spaces of the type , where is a Riemannian manifold. The Fourier series converges in ways similar to the case. A typical example is to take to be the sphere with the usual metric, in which case the Fourier basis consists of spherical harmonics.
This generalizes the Fourier transform to or , where is an LCA group. If is compact, one also obtains a Fourier series, which converges similarly to the case, but if is noncompact, one obtains instead a Fourier integral. This generalization yields the usual Fourier transform when the underlying locally compact Abelian group is .
We can also define the Fourier series for functions of two variables and in the square :
Aside from being useful for solving partial differential equations such as the heat equation, one notable application of Fourier series on the square is in image compression. In particular, the JPEG image compression standard uses the two-dimensional discrete cosine transform, a discrete form of the Fourier cosine transform, which uses only cosine as the basis function.
For two-dimensional arrays with a staggered appearance, half of the Fourier series coefficients disappear, due to additional symmetry.[19]
Fourier series of Bravais-lattice-periodic-function
A three-dimensional Bravais lattice is defined as the set of vectors of the form: where are integers and are three linearly independent vectors. Assuming we have some function, , such that it obeys the condition of periodicity for any Bravais lattice vector , , we could make a Fourier series of it. This kind of function can be, for example, the effective potential that one electron "feels" inside a periodic crystal. It is useful to make the Fourier series of the potential when applying Bloch's theorem. First, we may write any arbitrary position vector in the coordinate-system of the lattice: where meaning that is defined to be the magnitude of , so is the unit vector directed along .
Thus we can define a new function,
This new function, , is now a function of three-variables, each of which has periodicity , , and respectively:
This enables us to build up a set of Fourier coefficients, each being indexed by three independent integers . In what follows, we use function notation to denote these coefficients, where previously we used subscripts. If we write a series for on the interval for , we can define the following: