Lebesgue's number lemma

From Wikipedia the free encyclopedia

In topology, the Delta number, is a useful tool in the study of compact metric spaces. It states:

If the metric space is compact and an open cover of is given, then there exists a number such that every subset of having diameter less than is contained in some member of the cover.

Such a number is called a Delta number of this cover. The notion of a Delta number itself is useful in other applications as well.

Proof[edit]

Direct Proof[edit]

Let be an open cover of . Since is compact we can extract a finite subcover . If any one of the 's equals then any will serve as a Delta number. Otherwise for each , let , note that is not empty, and define a function by

Since is continuous on a compact set, it attains a minimum . The key observation is that, since every is contained in some , the extreme value theorem shows . Now we can verify that this is the desired Delta number. If is a subset of of diameter less than , choose as any point in , then by definition of diameter, , where denotes the ball of radius centered at . Since there must exist at least one such that . But this means that and so, in particular, .

Proof by Contradiction[edit]

Suppose for contradiction that that is sequentially compact, is an open cover of , and the Lebesgue number does not exist. That is: for all , there exists with such that there does not exist with .

This enables us to perform the following construction:


Note that for all , since . It is therefore possible by the axiom of choice to construct a sequence in which for each . Since is sequentially compact, there exists a subsequence (with ) that converges to .

Because is an open cover, there exists some such that . As is open, there exists with . Now we invoke the convergence of the subsequence : there exists such that implies .

Furthermore, there exists such that . Hence for all , we have implies .

Finally, define such that and . For all , notice that:

  • , because .
  • , because entails .

Hence by the triangle inequality, which implies that . This yields the desired contradiction.


References[edit]

  • Munkres, James R. (1974), Topology: A first course, p. 179, ISBN 978-0-13-925495-6