Complex-valued smooth functions of the upper half plane (harmonic analysis topic)
In mathematics, Maass forms or Maass wave forms are studied in the theory of automorphic forms. Maass forms are complex-valued smooth functions of the upper half plane, which transform in a similar way under the operation of a discrete subgroup
of
as modular forms. They are eigenforms of the hyperbolic Laplace operator
defined on
and satisfy certain growth conditions at the cusps of a fundamental domain of
. In contrast to modular forms, Maass forms need not be holomorphic. They were studied first by Hans Maass in 1949.
The group
![{\displaystyle G:=\mathrm {SL} _{2}(\mathbb {R} )=\left\{{\begin{pmatrix}a&b\\c&d\\\end{pmatrix}}\in M_{2}(\mathbb {R} ):ad-bc=1\right\}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/383448743c5e74ade49ce1677191944ab093126c)
operates on the upper half plane
![{\displaystyle {\mathcal {H}}=\{z\in \mathbb {C} :\operatorname {Im} (z)>0\}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/24c3cbb6cd18b63dd3eec911c9ffed41d44a11de)
by fractional linear transformations:
![{\displaystyle {\begin{pmatrix}a&b\\c&d\\\end{pmatrix}}\cdot z:={\frac {az+b}{cz+d}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c51d963236fe829d7606bbbdc4273d6d9f158dd4)
It can be extended to an operation on
by defining:
![{\displaystyle {\begin{pmatrix}a&b\\c&d\\\end{pmatrix}}\cdot z:={\begin{cases}{\frac {az+b}{cz+d}}&{\text{if }}cz+d\neq 0,\\\infty &{\text{if }}cz+d=0,\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b037513ac2a48e10f2e76291199ddf045110cf20)
![{\displaystyle {\begin{pmatrix}a&b\\c&d\\\end{pmatrix}}\cdot \infty :=\lim _{\operatorname {Im} (z)\to \infty }{\begin{pmatrix}a&b\\c&d\\\end{pmatrix}}\cdot z={\begin{cases}{\frac {a}{c}}&{\text{if }}c\neq 0\\\infty &{\text{if }}c=0\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f8bf9d356bc7f31876dd3f34bc3903d74b45f8b3)
The Radon measure
![{\displaystyle d\mu (z):={\frac {dxdy}{y^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3dc803a08f1afcc65beb2cf124a47fe492cab5b4)
defined on
is invariant under the operation of
.
Let
be a discrete subgroup of
. A fundamental domain for
is an open set
, so that there exists a system of representatives
of
with
![{\displaystyle F\subset R\subset {\overline {F}}{\text{ and }}\mu ({\overline {F}}\setminus F)=0.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e9dbfb2751b3edf08a4c94774d2d2636dea738b7)
A fundamental domain for the modular group
is given by
![{\displaystyle F:=\left\{z\in {\mathcal {H}}\mid \left|\operatorname {Re} (z)\right|<{\frac {1}{2}},|z|>1\right\}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/838e0c13a6317fbb7d083f4b1338b95c8e5f504a)
(see Modular form).
A function
is called
-invariant, if
holds for all
and all
.
For every measurable,
-invariant function
the equation
![{\displaystyle \int _{F}f(z)\,d\mu (z)=\int _{\Gamma \backslash {\mathcal {H}}}f(z)\,d\mu (z),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0ca01ba014e9c0b8e9ad135180da2bdb34722172)
holds. Here the measure
on the right side of the equation is the induced measure on the quotient
Definition of the hyperbolic Laplace operator
[edit] The hyperbolic Laplace operator on
is defined as
![{\displaystyle \Delta :C^{\infty }({\mathcal {H}})\to C^{\infty }({\mathcal {H}}),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cf8b56f72732bf16d10f10bca6e51fff42c875ee)
![{\displaystyle \Delta =-y^{2}\left({\frac {\partial ^{2}}{\partial x^{2}}}+{\frac {\partial ^{2}}{\partial y^{2}}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3f240dc57c230fe539a33cd060a9b9a818ee7750)
A Maass form for the group
is a complex-valued smooth function
on
satisfying
![{\displaystyle f(\gamma z)=f(z){\text{ for all }}\gamma \in \Gamma (1),\qquad z\in {\mathcal {H}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/90b3082207b47cb2a195d47b00c01e14d4347c4a)
![{\displaystyle {\text{there exists }}\lambda \in \mathbb {C} {\text{ with }}\Delta (f)=\lambda f}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5c0fb97adee4603783db3140308d9ccec7c8fec9)
![{\displaystyle {\text{there exists }}N\in \mathbb {N} {\text{ with }}f(x+iy)={\mathcal {O}}(y^{N}){\text{ for }}y\geq 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a3c830531d170753864fd918f3037db94b876ddb)
If
![{\displaystyle \int _{0}^{1}f(z+t)dt=0{\text{ for all }}z\in {\mathcal {H}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dae10292c36d1e9b2ff871b62067f8d9cf4383f1)
we call
Maass cusp form.
Let
be a Maass form. Since
![{\displaystyle \gamma :={\begin{pmatrix}1&1\\0&1\\\end{pmatrix}}\in \Gamma (1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f43a78b7af1cf5786e5b4106d3bb706a17b40949)
we have:
![{\displaystyle \forall z\in {\mathcal {H}}:\qquad f(z)=f(\gamma z)=f(z+1).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/746488e4085c5fee08c5d9ddc47a0efd4550f1d9)
Therefore
has a Fourier expansion of the form
![{\displaystyle f(x+iy)=\sum _{n=-\infty }^{\infty }a_{n}(y)e^{2\pi inx},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3fcf16dcd8e67194014944ef3c6fd8f0aad473c9)
with coefficient functions
It is easy to show that
is Maass cusp form if and only if
.
We can calculate the coefficient functions in a precise way. For this we need the Bessel function
.
Definition: The Bessel function
is defined as
![{\displaystyle K_{s}(y):={\frac {1}{2}}\int _{0}^{\infty }e^{-{\frac {y(t+t^{-1})}{2}}}t^{s}{\frac {dt}{t}},\qquad s\in \mathbb {C} ,y>0.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3dacd5044e7a0524ae44e416727e57846d18235a)
The integral converges locally uniformly absolutely for
in
and the inequality
![{\displaystyle K_{s}(y)\leq e^{-{\frac {y}{2}}}K_{\operatorname {Re} (s)}(2)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8fc38c73693017f53befb70ded22ef0943164fb8)
holds for all
.
Therefore,
decreases exponentially for
. Furthermore, we have
for all
.
Proof: We have
![{\displaystyle \Delta (f)=\left({\frac {1}{4}}-\nu ^{2}\right)f.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a0ba2c209c36e544f337195db77f8526124541d6)
By the definition of the Fourier coefficients we get
![{\displaystyle a_{n}(y)=\int _{0}^{1}f(x+iy)e^{-2\pi inx}dx}](https://wikimedia.org/api/rest_v1/media/math/render/svg/494725bacf03d8f25c2c2078299407a99412936d)
for
Together it follows that
![{\displaystyle {\begin{aligned}\left({\frac {1}{4}}-\nu ^{2}\right)a_{n}(y)&=\int _{0}^{1}\left({\frac {1}{4}}-\nu ^{2}\right)f(x+iy)e^{-2\pi inx}dx\\[4pt]&=\int _{0}^{1}(\Delta f)(x+iy)e^{-2\pi inx}dx\\[4pt]&=-y^{2}\left(\int _{0}^{1}{\frac {\partial ^{2}f}{\partial x^{2}}}(x+iy)e^{-2\pi inx}dx+\int _{0}^{1}{\frac {\partial ^{2}f}{\partial y^{2}}}(x+iy)e^{-2\pi inx}dx\right)\\[4pt]&{\overset {(1)}{=}}-y^{2}(2\pi in)^{2}a_{n}(y)-y^{2}{\frac {\partial ^{2}}{\partial y^{2}}}\int _{0}^{1}f(x+iy)e^{-2\pi inx}dx\\[4pt]&=-y^{2}(2\pi in)^{2}a_{n}(y)-y^{2}{\frac {\partial ^{2}}{\partial y^{2}}}a_{n}(y)\\[4pt]&=4\pi ^{2}n^{2}y^{2}a_{n}(y)-y^{2}{\frac {\partial ^{2}}{\partial y^{2}}}a_{n}(y)\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8dbb275ae73da95b706ad5d037dd29f6a1e249c3)
for
In (1) we used that the nth Fourier coefficient of
is
for the first summation term. In the second term we changed the order of integration and differentiation, which is allowed since f is smooth in y . We get a linear differential equation of second degree:
![{\displaystyle y^{2}{\frac {\partial ^{2}}{\partial y^{2}}}a_{n}(y)+\left({\frac {1}{4}}-\nu ^{2}-4\pi n^{2}y^{2}\right)a_{n}(y)=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3ef76c3677118ca365e44d569a0ab5ff686efecb)
For
one can show, that for every solution
there exist unique coefficients
with the property
For
every solution
has coefficients of the form
![{\displaystyle a_{n}(y)=c_{n}{\sqrt {y}}K_{v}(2\pi |n|y)+d_{n}{\sqrt {y}}I_{v}(2\pi |n|y)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/31aa29f91acf176a82112c682f3b170c0c226fa7)
for unique
. Here
and
are Bessel functions.
The Bessel functions
grow exponentially, while the Bessel functions
decrease exponentially. Together with the polynomial growth condition 3) we get
(also
) for a unique
. Q.E.D.
Even and odd Maass forms: Let
. Then i operates on all functions
by
and commutes with the hyperbolic Laplacian. A Maass form
is called even, if
and odd if
. If f is a Maass form, then
is an even Maass form and
an odd Maass form and it holds that
.
Let
![{\displaystyle f(x+iy)=\sum _{n\neq 0}c_{n}{\sqrt {y}}K_{\nu }(2\pi |n|y)e^{2\pi inx}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/912d3a5d7d5da2a1de091b888b3df7885841a3a3)
be a Maass cusp form. We define the L-function of
as
![{\displaystyle L(s,f)=\sum _{n=1}^{\infty }c_{n}n^{-s}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8dfb16f57bebd92be400802585c2a3e9d3fca659)
Then the series
converges for
and we can continue it to a whole function on
.
If
is even or odd we get
![{\displaystyle \Lambda (s,f):=\pi ^{-s}\Gamma \left({\frac {s+\varepsilon +\nu }{2}}\right)\Gamma \left({\frac {s+\varepsilon -\nu }{2}}\right)L(s,f).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4891af19597925e8c89506e994bfb729d72a03e4)
Here
if
is even and
if
is odd. Then
satisfies the functional equation
![{\displaystyle \Lambda (s,f)=(-1)^{\varepsilon }\Lambda (1-s,f).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4e01dfcd5025fff2037fe8a8de9d144933844667)
Example: The non-holomorphic Eisenstein-series E
[edit] The non-holomorphic Eisenstein-series is defined for
and
as
![{\displaystyle E(z,s):=\pi ^{-s}\Gamma (s){\frac {1}{2}}\sum _{(m,n)\neq (0,0)}{\frac {y^{s}}{|mz+n|^{2s}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9003c41e34297df63348e2934c9983678d67474b)
where
is the Gamma function.
The series converges absolutely in
for
and locally uniformly in
, since one can show, that the series
![{\displaystyle S(z,s):=\sum _{(m,n)\neq (0,0)}{\frac {1}{|mz+n|^{s}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/45c2729328f932af5586ef6642ec00bbd1fd8072)
converges absolutely in
, if
. More precisely it converges uniformly on every set
, for every compact set
and every
.
We only show
-invariance and the differential equation. A proof of the smoothness can be found in Deitmar or Bump. The growth condition follows from the Fourier expansion of the Eisenstein series.
We will first show the
-invariance. Let
![{\displaystyle \Gamma _{\infty }:=\pm {\begin{pmatrix}1&\mathbb {Z} \\0&1\\\end{pmatrix}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1fed7c9ba59248f3fc3dd31133a8705281cc2bd9)
be the stabilizer group
corresponding to the operation of
on
.
- Proposition. E is
-invariant.
Proof. Define:
![{\displaystyle {\tilde {E}}(z,s):=\sum _{\gamma \in \Gamma _{\infty }\backslash \Gamma }\Im (\gamma z)^{s}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6cb40afdda3ab0e63163a29934b068589e8d9a23)
(a)
converges absolutely in
for
and
Since
![{\displaystyle \gamma ={\begin{pmatrix}a&b\\c&d\\\end{pmatrix}}\in \Gamma (1)\Longrightarrow \Im (\gamma z)={\frac {\Im (z)}{|cz+d|^{2}}},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ec4e00239288a7c77c94817daac67802b748890b)
we obtain
![{\displaystyle {\tilde {E}}(z,s)=\sum _{\gamma \in \Gamma _{\infty }\backslash \Gamma }\Im (\gamma z)^{s}=\sum _{(c,d)=1{\bmod {\pm }}1}{\frac {y^{s}}{|cz+d|^{2s}}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/056592996753ba5aba0fb35122b71275fde42e63)
That proves the absolute convergence in
for
Furthermore, it follows that
![{\displaystyle \zeta (2s){\tilde {E}}(z,s)=\sum _{n=1}^{\infty }n^{-s}\sum _{(c,d)=1{\bmod {\pm }}1}{\frac {y^{s}}{|cz+d|^{2s}}}=\sum _{n=1}^{\infty }\sum _{(c,d)=1{\bmod {\pm }}1}{\frac {y^{s}}{|ncz+nd|^{2s}}}=\sum _{(m,n)\neq (0,0)}{\frac {y^{s}}{|mz+n|^{2s}}},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1cb9562c8562298bff2d2de6951672695a7b2c69)
since the map
![{\displaystyle {\begin{cases}\mathbb {N} \times \{(x,y)\in \mathbb {Z} ^{2}-\{(0,0)\}:(x,y)=1\}\to \mathbb {Z} ^{2}-\{(0,0)\}\\(n,(x,y))\mapsto (nx,ny)\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a407cac259a49aa075e50188212ef9e67cd45f58)
is a bijection (a) follows.
(b) We have
for all
.
For
we get
![{\displaystyle {\tilde {E}}({\tilde {\gamma }}z,s)=\sum _{\gamma \in \Gamma _{\infty }\backslash \Gamma }\Im ({\tilde {\gamma }}\gamma z)^{s}=\sum _{\gamma \in \Gamma _{\infty }\backslash \Gamma }\Im (\gamma z)^{s}={\tilde {E}}(z,s).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/23037cb9b79967ec6feffe4ed46aef71ed0d667a)
Together with (a),
is also invariant under
. Q.E.D.
- Proposition. E is an eigenform of the hyperbolic Laplace operator
We need the following Lemma:
- Lemma:
commutes with the operation of
on
. More precisely for all
we have: ![{\displaystyle L_{g}\Delta =\Delta L_{g}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/332f3b257f0907bc86d7c9555b923183c5513129)
Proof: The group
is generated by the elements of the form
![{\displaystyle {\begin{pmatrix}a&0\\0&{\frac {1}{a}}\\\end{pmatrix}},a\in \mathbb {R} ^{\times };\quad {\begin{pmatrix}1&x\\0&1\\\end{pmatrix}},x\in \mathbb {R} ;\quad S={\begin{pmatrix}0&-1\\1&0\\\end{pmatrix}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1902e7ccf698c809fc00d8b90750ed5fd0aa59d8)
One calculates the claim for these generators and obtains the claim for all
. Q.E.D.
Since
it is sufficient to show the differential equation for
. We have:
![{\displaystyle \Delta {\tilde {E}}(z,s):=\Delta \sum _{\gamma \in \Gamma _{\infty }\backslash \Gamma }\Im (\gamma z)^{s}=\sum _{\gamma \in \Gamma _{\infty }\backslash \Gamma }\Delta \left(\Im (\gamma z)^{s}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7b48ab2e1b7c1f77c2454384851470d2c0f280b3)
Furthermore, one has
![{\displaystyle \Delta \left(\Im (z)^{s}\right)=\Delta (y^{s})=-y^{2}\left({\frac {\partial ^{2}y^{s}}{\partial x^{2}}}+{\frac {\partial ^{2}y^{s}}{\partial y^{2}}}\right)=s(1-s)y^{s}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/992d7ce77a45b14275e1d5f34c782fc535f6a70a)
Since the Laplace Operator commutes with the Operation of
, we get
![{\displaystyle \forall \gamma \in \Gamma (1):\quad \Delta \left(\Im (\gamma z)^{s}\right)=s(1-s)\Im (\gamma z)^{s}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/436ce5ebca0f5efe4c9628bf2a65863b741e8dc3)
and so
![{\displaystyle \Delta {\tilde {E}}(z,s)=s(1-s){\tilde {E}}(z,s).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/06ab31ad1b901df59bf9c90d3b2334318b607ee4)
Therefore, the differential equation holds for E in
. In order to obtain the claim for all
, consider the function
. By explicitly calculating the Fourier expansion of this function, we get that it is meromorphic. Since it vanishes for
, it must be the zero function by the identity theorem.
The Fourier-expansion of E
[edit] The nonholomorphic Eisenstein series has a Fourier expansion
![{\displaystyle E(z,s)=\sum _{n=-\infty }^{\infty }a_{n}(y,s)e^{2\pi inx}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b2f8f3410468bfe2c30af24a01af54bfb5454527)
where
![{\displaystyle {\begin{aligned}a_{0}(y,s)&=\pi ^{-s}\Gamma (s)\zeta (2s)y^{s}+\pi ^{s-1}\Gamma (1-s)\zeta (2(1-s))y^{1-s}\\a_{n}(y,s)&=2|n|^{s-{\frac {1}{2}}}\sigma _{1-2s}(|n|){\sqrt {y}}K_{s-{\frac {1}{2}}}(2\pi |n|y)&&n\neq 0\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/03f29306da773c29d6c70715650ce07b226a0e47)
If
,
has a meromorphic continuation on
. It is holomorphic except for simple poles at
The Eisenstein series satisfies the functional equation
![{\displaystyle E(z,s)=E(z,1-s)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5c1cd0a0218178651d8d095f0582efb362eabe)
for all
.
Locally uniformly in
the growth condition
![{\displaystyle E(x+iy,s)={\mathcal {0}}(y^{\sigma })}](https://wikimedia.org/api/rest_v1/media/math/render/svg/72106d0f66f300105b3aeca3547cd5a9554d1f50)
holds, where
The meromorphic continuation of E is very important in the spectral theory of the hyperbolic Laplace operator.
Congruence subgroups
[edit] For
let
be the kernel of the canonical projection
![{\displaystyle \mathrm {SL} _{2}(\mathbb {Z} )\to \mathrm {SL} _{2}(\mathbb {Z} /N\mathbb {Z} ).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/703955e4fdaa88ec2d6479392c4cf92c603c15c5)
We call
principal congruence subgroup of level
. A subgroup
is called congruence subgroup, if there exists
, so that
. All congruence subgroups are discrete.
Let
![{\displaystyle {\overline {\Gamma (1)}}:=\Gamma (1)/\{\pm 1\}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/784e8873872b81eb9a756beea861b6a4360d6c27)
For a congruence subgroup
let
be the image of
in
. If S is a system of representatives of
, then
![{\displaystyle SD=\bigcup _{\gamma \in S}\gamma D}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fd20a397d167d0e9901f91e2befe6d4829747c10)
is a fundamental domain for
. The set
is uniquely determined by the fundamental domain
. Furthermore,
is finite.
The points
for
are called cusps of the fundamental domain
. They are a subset of
.
For every cusp
there exists
with
.
Let
be a congruence subgroup and
We define the hyperbolic Laplace operator
of weight
as
![{\displaystyle \Delta _{k}:C^{\infty }({\mathcal {H}})\to C^{\infty }({\mathcal {H}}),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1daba47f613596af33edf62beec7146467d380e9)
![{\displaystyle \Delta _{k}=-y^{2}\left({\frac {\partial ^{2}}{\partial x^{2}}}+{\frac {\partial ^{2}}{\partial y^{2}}}\right)+iky{\frac {\partial }{\partial x}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3302cded076bfd5e3f3cb73bf0f10daf4e1d265c)
This is a generalization of the hyperbolic Laplace operator
.
We define an operation of
on
by
![{\displaystyle f_{||k}g(z):=\left({\frac {cz+d}{|cz+d|}}\right)^{-k}f(gz)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a0647f1002326536c9b0de05561e2c3830b7cebc)
where
![{\displaystyle z\in {\mathcal {H}},g={\begin{pmatrix}\ast &\ast \\c&d\\\end{pmatrix}}\in \mathrm {SL} _{2}(\mathbb {R} ),f\in C^{\infty }({\mathcal {H}}).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/11f42cbdc158f6047d001a33c18122fd1d9a2822)
It can be shown that
![{\displaystyle (\Delta _{k}f)_{||k}g=\Delta _{k}(f_{||k}g)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7ed15cda23d4a81ee61f391f796a467154a7d7fa)
holds for all
and every
.
Therefore,
operates on the vector space
.
Definition. A Maass form of weight
for
is a function
that is an eigenfunction of
and is of moderate growth at the cusps.
The term moderate growth at cusps needs clarification. Infinity is a cusp for
a function
is of moderate growth at
if
is bounded by a polynomial in y as
. Let
be another cusp. Then there exists
with
. Let
. Then
, where
is the congruence subgroup
. We say
is of moderate growth at the cusp
, if
is of moderate growth at
.
Definition. If
contains a principal congruence subgroup of level
, we say that
is cuspidal at infinity, if
![{\displaystyle \forall z\in {\mathcal {H}}:\quad \int _{0}^{N}f(z+u)du=0.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5fd700aae29fd245158adaaa699de066fd89f7f9)
We say that
is cuspidal at the cusp
if
is cuspidal at infinity. If
is cuspidal at every cusp, we call
a cusp form.
We give a simple example of a Maass form of weight
for the modular group:
Example. Let
be a modular form of even weight
for
Then
is a Maass form of weight
for the group
.
The spectral problem
[edit] Let
be a congruence subgroup of
and let
be the vector space of all measurable functions
with
for all
satisfying
![{\displaystyle \|f\|^{2}:=\int _{\Gamma \backslash {\mathcal {H}}}|f(z)|^{2}d\mu (z)<\infty }](https://wikimedia.org/api/rest_v1/media/math/render/svg/618b01d928df690de33c8498e9558bc90ce3aca1)
modulo functions with
The integral is well defined, since the function
is
-invariant. This is a Hilbert space with inner product
![{\displaystyle \langle f,g\rangle =\int _{\Gamma \backslash {\mathcal {H}}}f(z){\overline {g(z)}}d\mu (z).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/38fc02d53fe16f4dade4091f7491fc0c67b6efca)
The operator
can be defined in a vector space
which is dense in
. There
is a positive semidefinite symmetric operator. It can be shown, that there exists a unique self-adjoint continuation on
Define
as the space of all cusp forms
Then
operates on
and has a discrete spectrum. The spectrum belonging to the orthogonal complement has a continuous part and can be described with the help of (modified) non-holomorphic Eisenstein series, their meromorphic continuations and their residues. (See Bump or Iwaniec).
If
is a discrete (torsion free) subgroup of
, so that the quotient
is compact, the spectral problem simplifies. This is because a discrete cocompact subgroup has no cusps. Here all of the space
is a sum of eigenspaces.
Embedding into the space L2(Γ \ G)
[edit]
is a locally compact unimodular group with the topology of
Let
be a congruence subgroup. Since
is discrete in
, it is closed in
as well. The group
is unimodular and since the counting measure is a Haar-measure on the discrete group
,
is also unimodular. By the Quotient Integral Formula there exists a
-right-invariant Radon measure
on the locally compact space
. Let
be the corresponding
-space. This space decomposes into a Hilbert space direct sum:
![{\displaystyle L^{2}(\Gamma \backslash G)=\bigoplus _{k\in \mathbb {Z} }L^{2}(\Gamma \backslash G,k)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/224964f52dbc7a0cedcf95380719296d1f878ea7)
where
![{\displaystyle L^{2}(\Gamma \backslash G,k):=\left\{\phi \in L^{2}(\Gamma \backslash G)\mid \phi (xk_{\theta })=e^{ik\theta }F(x)\forall x\in \Gamma \backslash G\forall \theta \in \mathbb {R} \right\}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/abcf95cf7ca139da0dd7bfbf60d0362227235b45)
and
![{\displaystyle k_{\theta }={\begin{pmatrix}\cos(\theta )&-\sin(\theta )\\\sin(\theta )&\cos(\theta )\\\end{pmatrix}}\in SO(2),\theta \in \mathbb {R} .}](https://wikimedia.org/api/rest_v1/media/math/render/svg/124d54f09cbdf59a3be0bffd35a82e07f4e19ca4)
The Hilbert-space
can be embedded isometrically into the Hilbert space
. The isometry is given by the map
![{\displaystyle {\begin{cases}\psi _{k}:L^{2}(\Gamma \backslash {\mathcal {H}},k)\to L^{2}(\Gamma \backslash G,k)\\\psi _{k}(f)(g):=f_{||k}\gamma (i)\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a69427ff045f53b8aefac3902936d44be36b6544)
Therefore, all Maass cusp forms for the congruence group
can be thought of as elements of
.
is a Hilbert space carrying an operation of the group
, the so-called right regular representation:
![{\displaystyle R_{g}\phi :=\phi (xg),{\text{ where }}x\in \Gamma \backslash G{\text{ and }}\phi \in L^{2}(\Gamma \backslash G).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6f9babb10cd6b62526baa35d760d8622bc65352e)
One can easily show, that
is a unitary representation of
on the Hilbert space
. One is interested in a decomposition into irreducible subrepresentations. This is only possible if
is cocompact. If not, there is also a continuous Hilbert-integral part. The interesting part is, that the solution of this problem also solves the spectral problem of Maass forms. (see Bump, C. 2.3)
A Maass cusp form, a subset of Maass forms, is a function on the upper half-plane that transforms like a modular form but need not be holomorphic. They were first studied by Hans Maass in Maass (1949).
Let k be an integer, s be a complex number, and Γ be a discrete subgroup of SL2(R). A Maass form of weight k for Γ with Laplace eigenvalue s is a smooth function from the upper half-plane to the complex numbers satisfying the following conditions:
- For all
and all
, we have ![{\displaystyle f\left({\frac {az+b}{cz+d}}\right)=\left({\frac {cz+d}{|cz+d|}}\right)^{k}f(z).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9a476809aa87fc04bdb78d62580b34f87f72d73d)
- We have
, where
is the weight k hyperbolic Laplacian defined as ![{\displaystyle \Delta _{k}=-y^{2}\left({\frac {\partial ^{2}}{\partial x^{2}}}+{\frac {\partial ^{2}}{\partial y^{2}}}\right)+iky{\frac {\partial }{\partial x}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3302cded076bfd5e3f3cb73bf0f10daf4e1d265c)
- The function
is of at most polynomial growth at cusps.
A weak Maass form is defined similarly but with the third condition replaced by "The function
has at most linear exponential growth at cusps". Moreover,
is said to be harmonic if it is annihilated by the Laplacian operator.
Let
be a weight 0 Maass cusp form. Its normalized Fourier coefficient at a prime p is bounded by p7/64 + p−7/64. This theorem is due to Henry Kim and Peter Sarnak. It is an approximation toward Ramanujan-Petersson conjecture.
Maass cusp forms can be regarded as automorphic forms on GL(2). It is natural to define Maass cusp forms on GL(n) as spherical automorphic forms on GL(n) over the rational number field. Their existence is proved by Miller, Mueller, etc.
Automorphic representations of the adele group
[edit] Let
be a commutative ring with unit and let
be the group of
matrices with entries in
and invertible determinant. Let
be the ring of rational adeles,
the ring of the finite (rational) adeles and for a prime number
let
be the field of p-adic numbers. Furthermore, let
be the ring of the p-adic integers (see Adele ring). Define
. Both
and
are locally compact unimodular groups if one equips them with the subspace topologies of
respectively
. Then:
![{\displaystyle G_{\text{fin}}:=G_{\mathbb {A} _{\text{fin}}}\cong {\widehat {\prod _{p<\infty }^{K_{p}}}}G_{p}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/deff99b31c9361d756d1bcd6739cd40375a5a938)
The right side is the restricted product, concerning the compact, open subgroups
of
. Then
locally compact group, if we equip it with the restricted product topology.
The group
is isomorphic to
![{\displaystyle G_{\text{fin}}\times G_{\mathbb {R} }}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4cfd30931742843c75e08183e16b27778ae3578f)
and is a locally compact group with the product topology, since
and
are both locally compact.
Let
![{\displaystyle {\widehat {\mathbb {Z} }}=\prod _{p<\infty }\mathbb {Z} _{p}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2cf4cf58c302c38c45c389fed6c23a64ff3f512d)
The subgroup
![{\displaystyle G_{\widehat {\mathbb {Z} }}:=\prod _{p<\infty }K_{p}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9e98eb51cf1bd3008a036b7c0fc40ef7ac1e9067)
is a maximal compact, open subgroup of
and can be thought of as a subgroup of
, when we consider the embedding
.
We define
as the center of
, that means
is the group of all diagonal matrices of the form
, where
. We think of
as a subgroup of
since we can embed the group by
.
The group
is embedded diagonally in
, which is possible, since all four entries of a
can only have finite amount of prime divisors and therefore
for all but finitely many prime numbers
.
Let
be the group of all
with
. (see Adele Ring for a definition of the absolute value of an Idele). One can easily calculate, that
is a subgroup of
.
With the one-to-one map
we can identify the groups
and
with each other.
The group
is dense in
and discrete in
. The quotient
is not compact but has finite Haar-measure.
Therefore,
is a lattice of
similar to the classical case of the modular group and
. By harmonic analysis one also gets that
is unimodular.
We now want to embed the classical Maass cusp forms of weight 0 for the modular group into
. This can be achieved with the "strong approximation theorem", which states that the map
![{\displaystyle \psi :G_{\mathbb {Z} }x_{\infty }\mapsto G_{\mathbb {Q} }(1,x_{\infty })G_{\widehat {\mathbb {Z} }}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/91d4767bd276bf275530d5b7614af21af9aa053d)
is a
-equivariant homeomorphism. So we get