Convergence simple

En mathématiques, la convergence simple ou ponctuelle est une notion de convergence dans un espace fonctionnel, c’est-à-dire dans un ensemble de fonctions entre deux espaces topologiques. C'est une définition peu exigeante : elle est plus facile à établir que d'autres formes de convergence, notamment la convergence uniforme. Le passage à la limite possède donc moins de propriétés : une suite de fonctions continues peut ainsi converger simplement vers une fonction qui ne l'est pas.

Exemple : les fonctions continues en vert fn(x) = sinn(x) convergent simplement vers la fonction discontinue en rouge.

Illustrons la convergence simple sur la suite de fonctions continues définie par pour tout entre 0 et . Quand , et donc converge vers 0 quand tend vers l'infini. Pour , on a , qui converge vers 1 quand tend vers l'infini. Ainsi, en posant , on a pour tout entre 0 et 1, qui tend vers quand tend vers l'infini. Autrement, converge simplement vers quand tend vers l'infini.

La figure à droite montre les graphes des fonctions (en bleu et vert) et de la fonction (en rouge). Le graphe de ressemble à une cloche centrée autour de . On voit que, plus grandit, plus cette cloche se resserre. On notera que la convergence simple ne préserve pas la continuité : bien que les fonctions soient continues, la fonction limite ne l'est pas (elle admet une discontinuité au point ).

Convergence simple d'une suite de fonctions

[modifier | modifier le code]

Définition

[modifier | modifier le code]

Soient X un ensemble, Y un espace topologique, et une suite de fonctions définies sur X et à valeurs dans Y.

  • La suite converge simplement si
pour tout , la suite converge dans Y.
  • La suite d'applications converge simplement vers une application si
pour tout , la suite converge vers f(x).
  • L'ensemble de départ X n'est pas supposé muni d'une structure topologique.
  • Si l'espace d'arrivée Y est supposé séparé, alors l'éventuelle limite simple d'une suite de fonctions à valeurs dans Y est toujours unique.
  • Si Y est même un espace métrique, c'est-à-dire muni d'une distance d et de la topologie associée, alors on peut traduire la notion de convergence simple en termes de « epsilon » :
Une suite de fonctions converge simplement sur A vers une fonction f si et seulement si
.

Topologie de la convergence simple

[modifier | modifier le code]

Définition

[modifier | modifier le code]

L'ensemble des applications de X dans Y est noté YX. Il existe sur cet ensemble au moins une topologie pour laquelle la convergence des suites de fonctions est la convergence simple : la topologie produit, ou topologie de la convergence simple. On peut en décrire une prébase : si l'on note W(x, V), pour tout point x de X et tout ouvert V de Y, l'ensemble des applications f de X dans Y telles que f(x)∈V, alors l'ensemble de tous les W(x, V) forme une prébase de la topologie produit, c'est-à-dire que les ouverts de YX sont les réunions quelconques d'intersections finies de parties de la forme W(x, V).

Propriétés

[modifier | modifier le code]

La convergence simple est un critère de convergence peu contraignant, comme son nom l'indique. Elle admet moins de propriétés que la convergence uniforme.

  • La convergence uniforme entraîne clairement la convergence simple. La réciproque est -généralement- fausse, comme le montre le contre-exemple illustré graphiquement en début d'article.
  • La convergence simple ne conserve pas la continuité, comme le montre le même graphique.
  • Dans le cas où l'ensemble de départ est un espace mesurable et où l'ensemble d'arrivée est le corps des réels alors la convergence simple peut indiquer la convergence pour la norme L1 avec l'ajout de certaines hypothèses décrites dans les articles Théorème de convergence monotone et Théorème de convergence dominée.
  • Le passage à la limite pour l'intégrale des limites simples a contribué à motiver l'introduction par Henri Lebesgue de sa notion de fonction mesurable. La préservation de l'intégrabilité locale n'est en effet pas vraie au sens de Riemann employé dans le cadre de la théorie de l'intégrale de Riemann.
  1. Alors que l'espace de Cantor et le cube de Hilbert, produits dénombrables, sont métrisables.
  2. Sauf bien sûr si la topologie sur Y est grossière.