Domaine fondamental

En géométrie, un domaine fondamental pour l'action d'un groupe sur un ensemble E est une région de E dont les images par l'action du groupe forment une partition de E[1]. C'est donc un domaine contenant exactement un point par orbite du groupe.

Domaine fondamental pour l'action du groupe modulaire sur le demi-plan de Poincaré.

Définition formelle

[modifier | modifier le code]

Soit G un groupe, E un ensemble sur lequel G agit. On note g(x) l'image d'un point x de E par l'action de l'élément gG. Un sous-ensemble F de E est appelé domaine fondamental pour l'action du groupe si :

  1.  ;
  2. .

Notes et références

[modifier | modifier le code]
  1. (en) S. V. Duzhin et B. D. Chebotarevsky, Transformation Groups For Beginners, (ISBN 978-0-8218-3643-9), p. 152.