Somme de Gauss

En mathématiques, et plus précisément en arithmétique modulaire, une somme de Gauss est un nombre complexe dont la définition utilise les outils de l'analyse harmonique sur un groupe abélien fini sur le corps fini ℤ/pp désigne un nombre premier impair et ℤ l'ensemble des entiers relatifs.

Elles ont été introduites par le mathématicien Carl Friedrich Gauss dans ses Disquisitiones arithmeticae, parues en 1801.

Elles sont utilisées dans la théorie des polynômes cyclotomiques et possèdent de nombreuses applications.[réf. nécessaire] On peut citer par exemple une démonstration de la loi de réciprocité quadratique.

Définition

[modifier | modifier le code]

Dans cet article, p désigne un nombre premier impair, Fp le corps fini ℤ/pℤ et Fp* le groupe multiplicatif de ses éléments non nuls.

Soit ψ un caractère du groupe additif (Fp, +) et χ un caractère du groupe multiplicatif (Fp*, ∙), alors la somme de Gauss associée à χ et ψ est le nombre complexe, ici noté G(χ, ψ) et défini par :

En termes de transformée de Fourier, on peut considérer l'application qui à χ associe G−1, ψ) comme la transformée de Fourier du prolongement de χ à Fp par l'égalité χ(0) = 0 et l'application qui à ψ associe G−1, ψ) comme la transformée de Fourier de la restriction de ψ à Fp*.

Propriétés

[modifier | modifier le code]

L'analyse harmonique permet de nombreux calculs sur les sommes de Gauss ; ce paragraphe propose quelques exemples.

  • Si m est un entier premier à p, alors
  • Si les deux caractères χ et ψ sont non triviaux — c'est-à-dire non constamment égaux à 1 — alors

Cette seconde propriété possède le corollaire immédiat suivant :

Si μ(a) désigne le symbole de Legendre (a/p) — égal à 1 si a est un carré dans Fp* et à –1 sinon — alors, pour tout caractère ψ non trivial,

Applications

[modifier | modifier le code]

Loi de réciprocité quadratique

[modifier | modifier le code]

La loi s'exprime de la manière suivante si q est aussi un nombre premier impair, distinct de p :

Somme quadratique de Gauss

[modifier | modifier le code]

Pour toute racine p-ième de l'unité ω différente de 1, avec p premier

Plus généralement, Gauss a démontré en 1801 les égalités suivantes au signe près pour tout entier n > 0 :

conjecturant alors que même les signes étaient exacts pour ce choix particulier ω = exp(2πi/n), et ce n'est qu'au bout de quatre ans d'efforts incessants qu'il est parvenu à résoudre cette conjecture[1],[2],[3].

Notes et références

[modifier | modifier le code]
  1. (en) Harold Edwards, Fermat's Last Theorem : A Genetic Introduction to Algebraic Number Theory, Springer, coll. « GTM » (no 50), , 3e éd., 407 p. (ISBN 978-0-387-95002-0, lire en ligne), p. 360.
  2. (en) Henry John Stephen Smith, « Report on the theory of numbers, Part I », 1859, réimpr. en 1984 dans The Collected Mathematical Papers of Henry John Stephen Smith, Art. 20.
  3. (en) Kenneth Ireland et Michael Rosen, A Classical Introduction to Modern Number Theory, Springer, coll. « GTM » (no 84), (réimpr. 1998), 2e éd., 389 p. (ISBN 978-0-387-97329-6, lire en ligne), p. 73.

Bibliographie

[modifier | modifier le code]

Articles connexes

[modifier | modifier le code]

Liens externes

[modifier | modifier le code]