Largest absolute value of an operator's eigenvalues
In mathematics , the spectral radius of a square matrix is the maximum of the absolute values of its eigenvalues .[ 1] More generally, the spectral radius of a bounded linear operator is the supremum of the absolute values of the elements of its spectrum . The spectral radius is often denoted by ρ(·) .
Let λ 1 , ..., λn be the eigenvalues of a matrix A ∈ C n ×n . The spectral radius of A is defined as
ρ ( A ) = max { | λ 1 | , … , | λ n | } . {\displaystyle \rho (A)=\max \left\{|\lambda _{1}|,\dotsc ,|\lambda _{n}|\right\}.} The spectral radius can be thought of as an infimum of all norms of a matrix. Indeed, on the one hand, ρ ( A ) ⩽ ‖ A ‖ {\displaystyle \rho (A)\leqslant \|A\|} for every natural matrix norm ‖ ⋅ ‖ {\displaystyle \|\cdot \|} ; and on the other hand, Gelfand's formula states that ρ ( A ) = lim k → ∞ ‖ A k ‖ 1 / k {\displaystyle \rho (A)=\lim _{k\to \infty }\|A^{k}\|^{1/k}} . Both of these results are shown below.
However, the spectral radius does not necessarily satisfy ‖ A v ‖ ⩽ ρ ( A ) ‖ v ‖ {\displaystyle \|A\mathbf {v} \|\leqslant \rho (A)\|\mathbf {v} \|} for arbitrary vectors v ∈ C n {\displaystyle \mathbf {v} \in \mathbb {C} ^{n}} . To see why, let r > 1 {\displaystyle r>1} be arbitrary and consider the matrix
C r = ( 0 r − 1 r 0 ) {\displaystyle C_{r}={\begin{pmatrix}0&r^{-1}\\r&0\end{pmatrix}}} . The characteristic polynomial of C r {\displaystyle C_{r}} is λ 2 − 1 {\displaystyle \lambda ^{2}-1} , so its eigenvalues are { − 1 , 1 } {\displaystyle \{-1,1\}} and thus ρ ( C r ) = 1 {\displaystyle \rho (C_{r})=1} . However, C r e 1 = r e 2 {\displaystyle C_{r}\mathbf {e} _{1}=r\mathbf {e} _{2}} . As a result,
‖ C r e 1 ‖ = r > 1 = ρ ( C r ) ‖ e 1 ‖ . {\displaystyle \|C_{r}\mathbf {e} _{1}\|=r>1=\rho (C_{r})\|\mathbf {e} _{1}\|.} As an illustration of Gelfand's formula, note that ‖ C r k ‖ 1 / k → 1 {\displaystyle \|C_{r}^{k}\|^{1/k}\to 1} as k → ∞ {\displaystyle k\to \infty } , since C r k = I {\displaystyle C_{r}^{k}=I} if k {\displaystyle k} is even and C r k = C r {\displaystyle C_{r}^{k}=C_{r}} if k {\displaystyle k} is odd.
A special case in which ‖ A v ‖ ⩽ ρ ( A ) ‖ v ‖ {\displaystyle \|A\mathbf {v} \|\leqslant \rho (A)\|\mathbf {v} \|} for all v ∈ C n {\displaystyle \mathbf {v} \in \mathbb {C} ^{n}} is when A {\displaystyle A} is a Hermitian matrix and ‖ ⋅ ‖ {\displaystyle \|\cdot \|} is the Euclidean norm . This is because any Hermitian Matrix is diagonalizable by a unitary matrix , and unitary matrices preserve vector length. As a result,
‖ A v ‖ = ‖ U ∗ D U v ‖ = ‖ D U v ‖ ⩽ ρ ( A ) ‖ U v ‖ = ρ ( A ) ‖ v ‖ . {\displaystyle \|A\mathbf {v} \|=\|U^{*}DU\mathbf {v} \|=\|DU\mathbf {v} \|\leqslant \rho (A)\|U\mathbf {v} \|=\rho (A)\|\mathbf {v} \|.} Bounded linear operators [ edit ] In the context of a bounded linear operator A on a Banach space , the eigenvalues need to be replaced with the elements of the spectrum of the operator , i.e. the values λ {\displaystyle \lambda } for which A − λ I {\displaystyle A-\lambda I} is not bijective. We denote the spectrum by
σ ( A ) = { λ ∈ C : A − λ I is not bijective } {\displaystyle \sigma (A)=\left\{\lambda \in \mathbb {C} :A-\lambda I\;{\text{is not bijective}}\right\}} The spectral radius is then defined as the supremum of the magnitudes of the elements of the spectrum:
ρ ( A ) = sup λ ∈ σ ( A ) | λ | {\displaystyle \rho (A)=\sup _{\lambda \in \sigma (A)}|\lambda |} Gelfand's formula, also known as the spectral radius formula, also holds for bounded linear operators: letting ‖ ⋅ ‖ {\displaystyle \|\cdot \|} denote the operator norm , we have
ρ ( A ) = lim k → ∞ ‖ A k ‖ 1 k = inf k ∈ N ∗ ‖ A k ‖ 1 k . {\displaystyle \rho (A)=\lim _{k\to \infty }\|A^{k}\|^{\frac {1}{k}}=\inf _{k\in \mathbb {N} ^{*}}\|A^{k}\|^{\frac {1}{k}}.} A bounded operator (on a complex Hilbert space) is called a spectraloid operator if its spectral radius coincides with its numerical radius . An example of such an operator is a normal operator .
The spectral radius of a finite graph is defined to be the spectral radius of its adjacency matrix .
This definition extends to the case of infinite graphs with bounded degrees of vertices (i.e. there exists some real number C such that the degree of every vertex of the graph is smaller than C ). In this case, for the graph G define:
ℓ 2 ( G ) = { f : V ( G ) → R : ∑ v ∈ V ( G ) ‖ f ( v ) 2 ‖ < ∞ } . {\displaystyle \ell ^{2}(G)=\left\{f:V(G)\to \mathbf {R} \ :\ \sum \nolimits _{v\in V(G)}\left\|f(v)^{2}\right\|<\infty \right\}.} Let γ be the adjacency operator of G :
{ γ : ℓ 2 ( G ) → ℓ 2 ( G ) ( γ f ) ( v ) = ∑ ( u , v ) ∈ E ( G ) f ( u ) {\displaystyle {\begin{cases}\gamma :\ell ^{2}(G)\to \ell ^{2}(G)\\(\gamma f)(v)=\sum _{(u,v)\in E(G)}f(u)\end{cases}}} The spectral radius of G is defined to be the spectral radius of the bounded linear operator γ .
Upper bounds on the spectral radius of a matrix [ edit ] The following proposition gives simple yet useful upper bounds on the spectral radius of a matrix.
Proposition. Let A ∈ C n ×n with spectral radius ρ (A ) and a consistent matrix norm ||⋅|| . Then for each integer k ⩾ 1 {\displaystyle k\geqslant 1} :
ρ ( A ) ≤ ‖ A k ‖ 1 k . {\displaystyle \rho (A)\leq \|A^{k}\|^{\frac {1}{k}}.} Proof
Let (v , λ ) be an eigenvector -eigenvalue pair for a matrix A . By the sub-multiplicativity of the matrix norm, we get:
| λ | k ‖ v ‖ = ‖ λ k v ‖ = ‖ A k v ‖ ≤ ‖ A k ‖ ⋅ ‖ v ‖ . {\displaystyle |\lambda |^{k}\|\mathbf {v} \|=\|\lambda ^{k}\mathbf {v} \|=\|A^{k}\mathbf {v} \|\leq \|A^{k}\|\cdot \|\mathbf {v} \|.} Since v ≠ 0 , we have
| λ | k ≤ ‖ A k ‖ {\displaystyle |\lambda |^{k}\leq \|A^{k}\|} and therefore
ρ ( A ) ≤ ‖ A k ‖ 1 k . {\displaystyle \rho (A)\leq \|A^{k}\|^{\frac {1}{k}}.} concluding the proof.
Upper bounds for spectral radius of a graph [ edit ] There are many upper bounds for the spectral radius of a graph in terms of its number n of vertices and its number m of edges. For instance, if
( k − 2 ) ( k − 3 ) 2 ≤ m − n ≤ k ( k − 3 ) 2 {\displaystyle {\frac {(k-2)(k-3)}{2}}\leq m-n\leq {\frac {k(k-3)}{2}}} where 3 ≤ k ≤ n {\displaystyle 3\leq k\leq n} is an integer, then[ 2]
ρ ( G ) ≤ 2 m − n − k + 5 2 + 2 m − 2 n + 9 4 {\displaystyle \rho (G)\leq {\sqrt {2m-n-k+{\frac {5}{2}}+{\sqrt {2m-2n+{\frac {9}{4}}}}}}} For real-valued matrices A {\displaystyle A} the inequality ρ ( A ) ≤ ‖ A ‖ 2 {\displaystyle \rho (A)\leq {\|A\|}_{2}} holds in particular, where ‖ ⋅ ‖ 2 {\displaystyle {\|\cdot \|}_{2}} denotes the spectral norm . In the case where A {\displaystyle A} is symmetric , this inequality is tight:
Theorem. Let A ∈ R n × n {\displaystyle A\in \mathbb {R} ^{n\times n}} be symmetric, i.e., A = A T . {\displaystyle A=A^{T}.} Then it holds that ρ ( A ) = ‖ A ‖ 2 . {\displaystyle \rho (A)={\|A\|}_{2}.}
Proof
Let ( v i , λ i ) i = 1 n {\displaystyle (v_{i},\lambda _{i})_{i=1}^{n}} be the eigenpairs of A . Due to the symmetry of A , all v i {\displaystyle v_{i}} and λ i {\displaystyle \lambda _{i}} are real-valued and the eigenvectors v i {\displaystyle v_{i}} are orthonormal . By the definition the spectral norm, there exists an x ∈ R n {\displaystyle x\in \mathbb {R} ^{n}} with ‖ x ‖ 2 = 1 {\displaystyle {\|x\|}_{2}=1} such that ‖ A ‖ 2 = ‖ A x ‖ 2 . {\displaystyle {\|A\|}_{2}={\|Ax\|}_{2}.} Since the eigenvectors v i {\displaystyle v_{i}} form a basis of R n , {\displaystyle \mathbb {R} ^{n},} there exists factors δ 1 , … , δ n ∈ R n {\displaystyle \delta _{1},\ldots ,\delta _{n}\in \mathbb {R} ^{n}} such that x = ∑ i = 1 n δ i v i {\displaystyle \textstyle x=\sum _{i=1}^{n}\delta _{i}v_{i}} which implies that
A x = ∑ i = 1 n δ i A v i = ∑ i = 1 n δ i λ i v i . {\displaystyle Ax=\sum _{i=1}^{n}\delta _{i}Av_{i}=\sum _{i=1}^{n}\delta _{i}\lambda _{i}v_{i}.} From the orthonormality of the eigenvectors v i {\displaystyle v_{i}} it follows that
‖ A x ‖ 2 = ‖ ∑ i = 1 n δ i λ i v i ‖ 2 = ∑ i = 1 n | δ i | ⋅ | λ i | ⋅ ‖ v i ‖ 2 = ∑ i = 1 n | δ i | ⋅ | λ i | {\displaystyle {\|Ax\|}_{2}=\|\sum _{i=1}^{n}\delta _{i}\lambda _{i}v_{i}\|_{2}=\sum _{i=1}^{n}{|\delta _{i}|}\cdot {|\lambda _{i}|}\cdot {\|v_{i}\|}_{2}=\sum _{i=1}^{n}{|\delta _{i}|}\cdot {|\lambda _{i}|}} and
‖ x ‖ 2 = ‖ ∑ i = 1 n δ i v i ‖ 2 = ∑ i = 1 n | δ i | ⋅ ‖ v i ‖ 2 = ∑ i = 1 n | δ i | . {\displaystyle {\|x\|}_{2}=\|\sum _{i=1}^{n}\delta _{i}v_{i}\|_{2}=\sum _{i=1}^{n}{|\delta _{i}|}\cdot {\|v_{i}\|}_{2}=\sum _{i=1}^{n}{|\delta _{i}|}.} Since x {\displaystyle x} is chosen such that it maximizes ‖ A x ‖ 2 {\displaystyle {\|Ax\|}_{2}} while satisfying ‖ x ‖ 2 = 1 , {\displaystyle {\|x\|}_{2}=1,} the values of δ i {\displaystyle \delta _{i}} must be such that they maximize ∑ i = 1 n | δ i | ⋅ | λ i | {\displaystyle \textstyle \sum _{i=1}^{n}{|\delta _{i}|}\cdot {|\lambda _{i}|}} while satisfying ∑ i = 1 n | δ i | = 1. {\displaystyle \textstyle \sum _{i=1}^{n}{|\delta _{i}|}=1.} This is achieved by setting δ k = 1 {\displaystyle \delta _{k}=1} for k = a r g m a x i = 1 n | λ i | {\displaystyle k=\mathrm {arg\,max} _{i=1}^{n}{|\lambda _{i}|}} and δ i = 0 {\displaystyle \delta _{i}=0} otherwise, yielding a value of ‖ A x ‖ 2 = | λ k | = ρ ( A ) . {\displaystyle {\|Ax\|}_{2}={|\lambda _{k}|}=\rho (A).}
The spectral radius is closely related to the behavior of the convergence of the power sequence of a matrix; namely as shown by the following theorem.
Theorem. Let A ∈ C n ×n with spectral radius ρ (A ) . Then ρ (A ) < 1 if and only if
lim k → ∞ A k = 0. {\displaystyle \lim _{k\to \infty }A^{k}=0.} On the other hand, if ρ (A ) > 1 , lim k → ∞ ‖ A k ‖ = ∞ {\displaystyle \lim _{k\to \infty }\|A^{k}\|=\infty } . The statement holds for any choice of matrix norm on C n ×n .
Proof
Assume that A k {\displaystyle A^{k}} goes to zero as k {\displaystyle k} goes to infinity. We will show that ρ (A ) < 1 . Let (v , λ ) be an eigenvector -eigenvalue pair for A . Since Ak v = λk v , we have
0 = ( lim k → ∞ A k ) v = lim k → ∞ ( A k v ) = lim k → ∞ λ k v = v lim k → ∞ λ k {\displaystyle {\begin{aligned}0&=\left(\lim _{k\to \infty }A^{k}\right)\mathbf {v} \\&=\lim _{k\to \infty }\left(A^{k}\mathbf {v} \right)\\&=\lim _{k\to \infty }\lambda ^{k}\mathbf {v} \\&=\mathbf {v} \lim _{k\to \infty }\lambda ^{k}\end{aligned}}} Since v ≠ 0 by hypothesis, we must have
lim k → ∞ λ k = 0 , {\displaystyle \lim _{k\to \infty }\lambda ^{k}=0,} which implies | λ | < 1 {\displaystyle |\lambda |<1} . Since this must be true for any eigenvalue λ {\displaystyle \lambda } , we can conclude that ρ (A ) < 1 .
Now, assume the radius of A is less than 1 . From the Jordan normal form theorem, we know that for all A ∈ C n ×n , there exist V , J ∈ C n ×n with V non-singular and J block diagonal such that:
A = V J V − 1 {\displaystyle A=VJV^{-1}} with
J = [ J m 1 ( λ 1 ) 0 0 ⋯ 0 0 J m 2 ( λ 2 ) 0 ⋯ 0 ⋮ ⋯ ⋱ ⋯ ⋮ 0 ⋯ 0 J m s − 1 ( λ s − 1 ) 0 0 ⋯ ⋯ 0 J m s ( λ s ) ] {\displaystyle J={\begin{bmatrix}J_{m_{1}}(\lambda _{1})&0&0&\cdots &0\\0&J_{m_{2}}(\lambda _{2})&0&\cdots &0\\\vdots &\cdots &\ddots &\cdots &\vdots \\0&\cdots &0&J_{m_{s-1}}(\lambda _{s-1})&0\\0&\cdots &\cdots &0&J_{m_{s}}(\lambda _{s})\end{bmatrix}}} where
J m i ( λ i ) = [ λ i 1 0 ⋯ 0 0 λ i 1 ⋯ 0 ⋮ ⋮ ⋱ ⋱ ⋮ 0 0 ⋯ λ i 1 0 0 ⋯ 0 λ i ] ∈ C m i × m i , 1 ≤ i ≤ s . {\displaystyle J_{m_{i}}(\lambda _{i})={\begin{bmatrix}\lambda _{i}&1&0&\cdots &0\\0&\lambda _{i}&1&\cdots &0\\\vdots &\vdots &\ddots &\ddots &\vdots \\0&0&\cdots &\lambda _{i}&1\\0&0&\cdots &0&\lambda _{i}\end{bmatrix}}\in \mathbf {C} ^{m_{i}\times m_{i}},1\leq i\leq s.} It is easy to see that
A k = V J k V − 1 {\displaystyle A^{k}=VJ^{k}V^{-1}} and, since J is block-diagonal,
J k = [ J m 1 k ( λ 1 ) 0 0 ⋯ 0 0 J m 2 k ( λ 2 ) 0 ⋯ 0 ⋮ ⋯ ⋱ ⋯ ⋮ 0 ⋯ 0 J m s − 1 k ( λ s − 1 ) 0 0 ⋯ ⋯ 0 J m s k ( λ s ) ] {\displaystyle J^{k}={\begin{bmatrix}J_{m_{1}}^{k}(\lambda _{1})&0&0&\cdots &0\\0&J_{m_{2}}^{k}(\lambda _{2})&0&\cdots &0\\\vdots &\cdots &\ddots &\cdots &\vdots \\0&\cdots &0&J_{m_{s-1}}^{k}(\lambda _{s-1})&0\\0&\cdots &\cdots &0&J_{m_{s}}^{k}(\lambda _{s})\end{bmatrix}}} Now, a standard result on the k -power of an m i × m i {\displaystyle m_{i}\times m_{i}} Jordan block states that, for k ≥ m i − 1 {\displaystyle k\geq m_{i}-1} :
J m i k ( λ i ) = [ λ i k ( k 1 ) λ i k − 1 ( k 2 ) λ i k − 2 ⋯ ( k m i − 1 ) λ i k − m i + 1 0 λ i k ( k 1 ) λ i k − 1 ⋯ ( k m i − 2 ) λ i k − m i + 2 ⋮ ⋮ ⋱ ⋱ ⋮ 0 0 ⋯ λ i k ( k 1 ) λ i k − 1 0 0 ⋯ 0 λ i k ] {\displaystyle J_{m_{i}}^{k}(\lambda _{i})={\begin{bmatrix}\lambda _{i}^{k}&{k \choose 1}\lambda _{i}^{k-1}&{k \choose 2}\lambda _{i}^{k-2}&\cdots &{k \choose m_{i}-1}\lambda _{i}^{k-m_{i}+1}\\0&\lambda _{i}^{k}&{k \choose 1}\lambda _{i}^{k-1}&\cdots &{k \choose m_{i}-2}\lambda _{i}^{k-m_{i}+2}\\\vdots &\vdots &\ddots &\ddots &\vdots \\0&0&\cdots &\lambda _{i}^{k}&{k \choose 1}\lambda _{i}^{k-1}\\0&0&\cdots &0&\lambda _{i}^{k}\end{bmatrix}}} Thus, if ρ ( A ) < 1 {\displaystyle \rho (A)<1} then for all i | λ i | < 1 {\displaystyle |\lambda _{i}|<1} . Hence for all i we have:
lim k → ∞ J m i k = 0 {\displaystyle \lim _{k\to \infty }J_{m_{i}}^{k}=0} which implies
lim k → ∞ J k = 0. {\displaystyle \lim _{k\to \infty }J^{k}=0.} Therefore,
lim k → ∞ A k = lim k → ∞ V J k V − 1 = V ( lim k → ∞ J k ) V − 1 = 0 {\displaystyle \lim _{k\to \infty }A^{k}=\lim _{k\to \infty }VJ^{k}V^{-1}=V\left(\lim _{k\to \infty }J^{k}\right)V^{-1}=0} On the other side, if ρ ( A ) > 1 {\displaystyle \rho (A)>1} , there is at least one element in J that does not remain bounded as k increases, thereby proving the second part of the statement.
Gelfand's formula, named after Israel Gelfand , gives the spectral radius as a limit of matrix norms.
For any matrix norm ||⋅||, we have[ 3]
ρ ( A ) = lim k → ∞ ‖ A k ‖ 1 k {\displaystyle \rho (A)=\lim _{k\to \infty }\left\|A^{k}\right\|^{\frac {1}{k}}} . Moreover, in the case of a consistent matrix norm lim k → ∞ ‖ A k ‖ 1 k {\displaystyle \lim _{k\to \infty }\left\|A^{k}\right\|^{\frac {1}{k}}} approaches ρ ( A ) {\displaystyle \rho (A)} from above (indeed, in that case ρ ( A ) ≤ ‖ A k ‖ 1 k {\displaystyle \rho (A)\leq \left\|A^{k}\right\|^{\frac {1}{k}}} for all k {\displaystyle k} ).
For any ε > 0 , let us define the two following matrices:
A ± = 1 ρ ( A ) ± ε A . {\displaystyle A_{\pm }={\frac {1}{\rho (A)\pm \varepsilon }}A.} Thus,
ρ ( A ± ) = ρ ( A ) ρ ( A ) ± ε , ρ ( A + ) < 1 < ρ ( A − ) . {\displaystyle \rho \left(A_{\pm }\right)={\frac {\rho (A)}{\rho (A)\pm \varepsilon }},\qquad \rho (A_{+})<1<\rho (A_{-}).} We start by applying the previous theorem on limits of power sequences to A + :
lim k → ∞ A + k = 0. {\displaystyle \lim _{k\to \infty }A_{+}^{k}=0.} This shows the existence of N + ∈ N such that, for all k ≥ N + ,
‖ A + k ‖ < 1. {\displaystyle \left\|A_{+}^{k}\right\|<1.} Therefore,
‖ A k ‖ 1 k < ρ ( A ) + ε . {\displaystyle \left\|A^{k}\right\|^{\frac {1}{k}}<\rho (A)+\varepsilon .} Similarly, the theorem on power sequences implies that ‖ A − k ‖ {\displaystyle \|A_{-}^{k}\|} is not bounded and that there exists N − ∈ N such that, for all k ≥ N− ,
‖ A − k ‖ > 1. {\displaystyle \left\|A_{-}^{k}\right\|>1.} Therefore,
‖ A k ‖ 1 k > ρ ( A ) − ε . {\displaystyle \left\|A^{k}\right\|^{\frac {1}{k}}>\rho (A)-\varepsilon .} Let N = max{N + , N − }. Then,
∀ ε > 0 ∃ N ∈ N ∀ k ≥ N ρ ( A ) − ε < ‖ A k ‖ 1 k < ρ ( A ) + ε , {\displaystyle \forall \varepsilon >0\quad \exists N\in \mathbf {N} \quad \forall k\geq N\quad \rho (A)-\varepsilon <\left\|A^{k}\right\|^{\frac {1}{k}}<\rho (A)+\varepsilon ,} that is,
lim k → ∞ ‖ A k ‖ 1 k = ρ ( A ) . {\displaystyle \lim _{k\to \infty }\left\|A^{k}\right\|^{\frac {1}{k}}=\rho (A).} This concludes the proof.
Gelfand's formula yields a bound on the spectral radius of a product of commuting matrices: if A 1 , … , A n {\displaystyle A_{1},\ldots ,A_{n}} are matrices that all commute, then
ρ ( A 1 ⋯ A n ) ≤ ρ ( A 1 ) ⋯ ρ ( A n ) . {\displaystyle \rho (A_{1}\cdots A_{n})\leq \rho (A_{1})\cdots \rho (A_{n}).} Consider the matrix
A = [ 9 − 1 2 − 2 8 4 1 1 8 ] {\displaystyle A={\begin{bmatrix}9&-1&2\\-2&8&4\\1&1&8\end{bmatrix}}} whose eigenvalues are 5, 10, 10 ; by definition, ρ (A ) = 10 . In the following table, the values of ‖ A k ‖ 1 k {\displaystyle \|A^{k}\|^{\frac {1}{k}}} for the four most used norms are listed versus several increasing values of k (note that, due to the particular form of this matrix, ‖ . ‖ 1 = ‖ . ‖ ∞ {\displaystyle \|.\|_{1}=\|.\|_{\infty }} ):
k ‖ ⋅ ‖ 1 = ‖ ⋅ ‖ ∞ {\displaystyle \|\cdot \|_{1}=\|\cdot \|_{\infty }} ‖ ⋅ ‖ F {\displaystyle \|\cdot \|_{F}} ‖ ⋅ ‖ 2 {\displaystyle \|\cdot \|_{2}} 1 14 15.362291496 10.681145748 2 12.649110641 12.328294348 10.595665162 3 11.934831919 11.532450664 10.500980846 4 11.501633169 11.151002986 10.418165779 5 11.216043151 10.921242235 10.351918183 ⋮ {\displaystyle \vdots } ⋮ {\displaystyle \vdots } ⋮ {\displaystyle \vdots } ⋮ {\displaystyle \vdots } 10 10.604944422 10.455910430 10.183690042 11 10.548677680 10.413702213 10.166990229 12 10.501921835 10.378620930 10.153031596 ⋮ {\displaystyle \vdots } ⋮ {\displaystyle \vdots } ⋮ {\displaystyle \vdots } ⋮ {\displaystyle \vdots } 20 10.298254399 10.225504447 10.091577411 30 10.197860892 10.149776921 10.060958900 40 10.148031640 10.112123681 10.045684426 50 10.118251035 10.089598820 10.036530875 ⋮ {\displaystyle \vdots } ⋮ {\displaystyle \vdots } ⋮ {\displaystyle \vdots } ⋮ {\displaystyle \vdots } 100 10.058951752 10.044699508 10.018248786 200 10.029432562 10.022324834 10.009120234 300 10.019612095 10.014877690 10.006079232 400 10.014705469 10.011156194 10.004559078 ⋮ {\displaystyle \vdots } ⋮ {\displaystyle \vdots } ⋮ {\displaystyle \vdots } ⋮ {\displaystyle \vdots } 1000 10.005879594 10.004460985 10.001823382 2000 10.002939365 10.002230244 10.000911649 3000 10.001959481 10.001486774 10.000607757 ⋮ {\displaystyle \vdots } ⋮ {\displaystyle \vdots } ⋮ {\displaystyle \vdots } ⋮ {\displaystyle \vdots } 10000 10.000587804 10.000446009 10.000182323 20000 10.000293898 10.000223002 10.000091161 30000 10.000195931 10.000148667 10.000060774 ⋮ {\displaystyle \vdots } ⋮ {\displaystyle \vdots } ⋮ {\displaystyle \vdots } ⋮ {\displaystyle \vdots } 100000 10.000058779 10.000044600 10.000018232
Notes and references [ edit ] Dunford, Nelson; Schwartz, Jacob (1963), Linear operators II. Spectral Theory: Self Adjoint Operators in Hilbert Space , Interscience Publishers, Inc. Lax, Peter D. (2002), Functional Analysis , Wiley-Interscience, ISBN 0-471-55604-1
Spaces
Theorems Operators Algebras Open problems Applications Advanced topics
Basic concepts Main results Special Elements/Operators Spectrum Decomposition Spectral Theorem Special algebras Finite-Dimensional Generalizations Miscellaneous Examples Applications