Zerodur

Opening of the ELT secondary mirror ZERODUR® blank mould containing the glass at first annealing at the Schott AG 4-meter blank annealing facility in Mainz, Germany.[1]

Zerodur is a lithium-aluminosilicate glass-ceramic manufactured by Schott AG. Zerodur has a near zero coefficient of thermal expansion (CTE), and is used for high-precision applications in telescope optics, microlithography machines and inertial navigation systems.[2][3][4]

Applications[edit]

The Keck II Telescope showing the segmented primary mirror made of Zerodur

The main applications for Zerodur include telescope optics in astronomy[5] and space applications,[6] lithography machines for microchips and displays,[7] and inertial measurements systems for navigation.[8][9]

In astronomy, it is used for mirror substrates in large telescopes such as the Hobby-Eberly Telescope,[10] the Keck I and Keck II telescopes,[11] the Gran Telescopio Canarias,[12] the Devasthal Optical Telescope,[13] the European Southern Observatory's 8.2 m Very Large Telescope,[14] and the 39 m Extremely Large Telescope.[15]

In space, it has been used for the primary mirror of SOFIA’s telescope,[16] for the imager in Meteosat Earth observation satellites,[17] and for the optical bench in the LISA Pathfinder mission.[18]

In microlithography, Zerodur is used in wafer steppers and scanner machines for precise and reproducible wafer positioning.[19][20] It is also used as a mirror substrate material in refractive optics for EUV lithography.[21]

In inertial measurement units, Zerodur is used in ring laser gyroscopes.[22]

Properties[edit]

Zerodur has both an amorphous (vitreous) component and a crystalline component. Its most important properties[23] are:

  • The material exhibits a particularly low thermal expansion, with a mean value of 0 ± 0.007×10−6 K−1 within the temperature range of 0 to 50 °C.[24][25]
  • High 3D homogeneity[25] with few inclusions, bubbles and internal stria.
  • Hardness similar to that of borosilicate glass.
  • High affinity for coatings.
  • Low helium permeability.
  • Non-porous.
  • Good chemical stability.
  • Fracture toughness approximately 0.9 MPa·m1/2.[26][27]

Physical properties[edit]

See also[edit]

References[edit]

  1. ^ "Secondary Mirror of ELT Successfully Cast - Largest convex mirror blank ever created". www.eso.org. Retrieved 22 May 2017.
  2. ^ "Zerodur®". Archived from the original on July 24, 2011. Retrieved September 4, 2011.
  3. ^ Viens, Michael J (April 1990). "Fracture Toughness and Crack Growth of Zerodur" (PDF). NASA Technical Memorandum 4185. NASA. Retrieved 28 August 2011.
  4. ^ "Schott AG Zerodur description". Archived from the original on February 1, 2014.
  5. ^ Döhring, Thorsten (May 2019). "Four decades of ZERODUR mirror substrates for astronomy". Proceedings, 4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Large Mirrors and Telescopes. 7281. doi:10.1117/12.831423. Retrieved 10 May 2024.
  6. ^ Carré, Antoine (May 2023). "Comprehensive review of the effects of ionizing radiations on the ZERODUR® glass ceramic". Journal of Astronomical Telescopes, Instruments, and Systems. 9 (2). doi:10.1117/1.JATIS.9.2.024005. Retrieved 10 May 2024.
  7. ^ "SCHOTT Strengthens Glass Substrate Portfolio". Printed Electronics Now. September 29, 2023.
  8. ^ Sokach, Stephen. "ZERODUR: The Highly Technical Glass-Ceramic". Tech Briefs. Retrieved 10 May 2024.
  9. ^ "Zerodur". Mindrum Precision. Retrieved 10 May 2024.
  10. ^ "Hobby-Eberly Telescope | McDonald Observatory". mcdonaldobservatory.org. Retrieved 2024-07-12.
  11. ^ "A Mirror's Perfect Reflection". W.M. Keck Observatory. Retrieved 10 May 2024.
  12. ^ "Description of the GTC". Gran Telescopio CANARIAS. Retrieved 10 May 2024.
  13. ^ "3.6 m DOT Telescope". ARIES. Retrieved July 7, 2024.
  14. ^ "Very Large Telescope". ESO. Retrieved 10 May 2024.
  15. ^ "Mirrors and Optical Design". ESO. Retrieved 10 May 2024.
  16. ^ Krabbe, Alfred (June 2000). "SOFIA telescope". Proceedings, Airborne Telescope Systems. 4014. arXiv:astro-ph/0004253. doi:10.1117/12.389103. Retrieved 10 May 2024.
  17. ^ "MTG (Meteosat Third Generation) - eoPortal". www.eoportal.org. Retrieved 2024-07-12.
  18. ^ "LISA Technology Package Optical Bench Interferometer During Calibration". ESA. Retrieved 10 May 2024.
  19. ^ Hartmann, Peter. "SCHOTT – Ultra low expansion glass ceramic ZERODUR" (PDF). Max-Planck-Institut für Astronomie. p. 49. Retrieved 10 May 2024.
  20. ^ Jedamzik, Ralf (2014). "Glass ceramic ZERODUR enabling nanometer precision". Proceedings, Optical Microlithography XXVII. 9052. doi:10.1117/12.2046352. Retrieved 10 May 2024.
  21. ^ Mitra, Ina (September 2022). "ZERODUR: a glass-ceramic material enabling optical technologies". Optical Materials Express. 12 (9): 3563. doi:10.1364/OME.460265. Retrieved 10 May 2024.
  22. ^ Pinckney, Linda R. (2003). "Glass-Ceramics". Encyclopedia of Physical Science and Technology (Third Edition): 807–816. doi:10.1016/B0-12-227410-5/00293-3. Retrieved 10 May 2024.
  23. ^ "ZERODUR® Extremely Low Expansion Glass Ceramic: SCHOTT Advanced Optics - SCHOTT AG". www.schott.com. Retrieved 15 April 2018.
  24. ^ "SCHOTT CTE Grades". Archived from the original on October 4, 2013.
  25. ^ a b [1][dead link]
  26. ^ Viens, Michael J (April 1990). "Fracture Toughness and Crack Growth of Zerodur" (PDF). NASA Technical Memorandum 4185. NASA. Retrieved 28 August 2011.
  27. ^ Hartmann, P. (18 December 2012). "ZERODUR - Deterministic Approach for Strength Design" (PDF). Optical Engineering. 51 (12). NASA: 124002. Bibcode:2012OptEn..51l4002H. doi:10.1117/1.OE.51.12.124002. S2CID 120843972. Retrieved 11 September 2013.
  28. ^ Senf, H; E Strassburger; H Rothenhausler (1997). "A study of Damage during Impact in Zerodur" (PDF). J Phys IV France. 7 (Colloque C3, Suppltment au Journal de Physique I11 d'aotit 1997): C3-1015-C3-1020. doi:10.1051/jp4:19973171. Retrieved 31 August 2011.

External links[edit]