Теорема Коши о многогранниках
Из Википедии, бесплатной энциклопедии
Теорема Коши о многогранниках утверждает, что грани многогранника вместе с правилом склейки полностью определяют выпуклый многогранник.
Формулировка
[править | править код]Два замкнутых выпуклых многогранника конгруэнтны, если существует непрерывная биекция между их поверхностями переводящая изометрией каждую грань первого многогранника в грань второго.
История
[править | править код]Вопрос о том, что грани многогранника вместе с правилами склейки полностью определяют выпуклый многогранник был сформулирован Лежандром в 1-м издании его учебника.[1] Там же была дана ключевая лемма о четырёх переменах знаков, которая использовалась Коши в его доказательстве.[2] Это доказательство содержало ошибку, которая была замечена Штейницем и исправлена только в 1934 году[3].
Вариации и обобщения
[править | править код]- Аналогичный результат верен в пространствах всех размерностей начиная с 3.
- Для невыпуклых многогранников аналогичный результат неверен.
- Более того, существует невыпуклый многогранник, который допускает непрерывные деформации в классе многогранников с конгруэнтными гранями. Такой многогранник называется изгибаемым. Однако, согласно теореме Сабитова, объём такого многогранника в процессе деформаций будет оставаться неизменным.
- Согласно теореме Александрова о развёртке, условие конгруэнтности граней можно ослабить до условия изометричности внутренней метрики поверхности многогранника.
- Более того, то же верно для любой замкнутой выпуклой поверхности (теорема единственности Погорелова).
См. также
[править | править код]Примечания
[править | править код]Литература
[править | править код]- Н. П. Долбилин, Жемчужины теории многогранников. М.: МЦНМО, 2000. 40 с. ISBN 5-900916-48-0; Тираж 2000 экз. Серия Библиотека «Математическое просвещение», выпуск 5.
- Лекция 24 в Табачников С. Л., Фукс Д. Б. Математический дивертисмент. — МЦНМО, 2011. — 512 с. — 2000 экз. — ISBN 978-5-94057-731-7.
Это заготовка статьи по математике. Помогите Википедии, дополнив её. |
Для улучшения этой статьи по математике желательно: |