Числа Бернулли

Из Википедии, бесплатной энциклопедии

Числители и знаменатели дроби чисел Бернулли составляют последовательность A027641 в OEIS и последовательность A027642 в OEIS соответственно;

Чи́сла Берну́лли — последовательность рациональных чисел , впервые рассмотренная Якобом Бернулли в связи с вычислением суммы последовательных натуральных чисел, возведённых в одну и ту же степень:

где  — биномиальный коэффициент.

Некоторые авторы указывают другие определения, однако в большинстве современных учебников даётся такое же определение, как и здесь. При этом . Часть авторов (например, трёхтомник Фихтенгольца) использует определение, которое отличается от этого только знаком . Кроме того, так как за исключением все числа Бернулли с нечётным номером равны 0, некоторые авторы используют обозначение «» для или .

Рекуррентная формула

[править | править код]

Для чисел Бернулли существует следующая рекуррентная формула:

Написана в 1713 году
  • Все числа Бернулли с нечётными номерами, кроме , равны нулю, а знаки чисел Бернулли с чётными номерами чередуются.
  • Числа Бернулли являются значениями многочленов Бернулли при :
  • Числа Бернулли часто входят в коэффициенты разложения элементарных функций в степенной ряд. Например:
    • Экспоненциальная производящая функция для чисел Бернулли:
  • Эйлер установил связь между числами Бернулли и значениями дзета-функции Римана ζ(s) при чётных s = 2k:
А также
для всех натуральных n > 1.
  • Порядок роста чисел Бернулли даётся следующей асимптотической формулой:
    при чётных . Из формулы, написанной выше, следует равносильность этой асимптотики и равенства: .
Получение чисел Бернулли из дзета-функции Римана
  • Теорема Штаудта-Клаузена утверждает, что
    • Из неё, в частности, следует, что знаменатель дроби есть произведение простых p таких, что p − 1 делит 2n.

Литература

[править | править код]
  • Бернуллиевы числа // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Абрамович В. Числа Бернулли // Квант. — 1974. — № 6. — С. 10—14.