Теорема Мікеля
Теорема Мікеля — твердження в планіметрії, пов'язане з перетином трьох кіл, кожне з яких проходить через вершину трикутника і дві точки на прилеглих до неї сторонах. Названо на честь французького математика Огюста Мікеля[fr][1]. Ця теорема — один з декількох отриманих Мікелем результатів, що стосуються кіл у геометрії, і опублікованих ним у Journal de mathématiques pures et appliquées[en].
Нехай — трикутник із довільними точками , і на сторонах , і відповідно (або на їх продовженнях). Опишемо три кола навколо трикутників , , і Теорема Мікеля стверджує, що ці три кола перетнуться в одній точці , яку називають точкою Мікеля. Окрім того, рівні будуть також кути (позначені на малюнку).[2][3]
Якщо точка Мікеля — центр описаного кола трикутника, а діаметри трьох кіл Мікеля дорівнюють радіусу описаного кола трикутника, і кожне з трьох кіл Мікеля проходить через спільну для них точку — центр описаного кола, а також через дві проєкції цього центра на сторони трикутника і через одну з трьох вершин, тоді радіуси трьох кіл Мікеля однакові.
- Точка Мікеля[ru] — інший результат Мікеля
- ↑ Ostermann та Wanner, (2012).
- ↑ Miquel, Auguste (1838), Mémoire de Géométrie, Journal de Mathématiques Pures et Appliquées, 1: 485—487, архів оригіналу за 13 лютого 2013, процитовано 14 травня 2021
- ↑ Wells, 1991 — Wells refers to Miquel's theorem as the pivot theorem
- Coxeter, H.S.M.; Greitzer, S.L. (1967), Geometry Revisited, New Mathematical Library, т. 19, Washington, D.C.: Mathematical Association of America, ISBN 978-0-88385-619-2, Zbl 0166.16402
- Forder, H.G. (1960), Geometry, London: Hutchinson
- Ostermann, Alexander; Wanner, Gerhard (2012), Geometry by its History, Springer, ISBN 978-3-642-29162-3
- Pedoe, Dan (1988) [1970], Geometry / A Comprehensive Course, Dover, ISBN 0-486-65812-0
- Smart, James R. (1997), Modern Geometries (вид. 5th), Brooks/Cole, ISBN 0-534-35188-3
- Wells, David (1991), The Penguin Dictionary of Curious and Interesting Geometry, New York: Penguin Books, ISBN 0-14-011813-6, Zbl 0856.00005