模糊集是模糊数学上的一个基本概念,是数学上普通集合的扩展。
给定一个论域 ,那么从到单位区间的一个映射称为上的一个模糊集,或的一个模糊子集[1]。
模糊集可以记为。映射(函数)或简记为叫做模糊集的隶属函数。对于每个, 叫做元素对模糊集的隶属度。
模糊集的常用表示法有下述几种:
- 解析法,也即给出隶属函数的具体表达式。
- Zadeh记法,例如。分母是论域中的元素,分子是该元素对应的隶属度。有时候,若隶属度为0,该项可以忽略不写。
- 序偶法,例如,序偶对的前者是论域中的元素,后者是该元素对应的隶属度。
- 向量法,在有限论域的场合,给论域中元素规定一个表达的顺序,那么可以将上述序偶法简写为隶属度的向量式,如。
和傳統的集合一樣,模糊集也有它的元素,但可以談論每個元素屬於該模糊集的程度,其從低至高一般用 0 到 1 之間的數來表示。模糊集理論是由盧菲特·澤德(1965)所引進的,是經典集合論的一種推廣[2]。在經典的集合論中,所謂的二分條件規定每個元素只能屬於或不屬於某個集合(因此模糊集不是集合);可以說,每個元素對每個集合的歸屬性(membership)都只能是 0 或 1。而每模糊集則擁有一個歸屬函數(membership function),其值允許取閉區間(單位區間)中的任何實數,用來表示元素對該集的歸屬程度。比如設某模糊集的歸屬函數為 ,而、、為三個元素;如果,,,則可以說 「完全屬於」,「完全不屬於」,「對的歸屬度為」(注意没有說「有一半屬於」,因為尚未規定的歸屬度具有甚麼特殊含義)。作為特例,當歸屬函數的值只能取 0 或 1 時,就得到了傳統集合論常用的指示函数(indicator function)[3]。傳統集合在模糊集理論中通常稱作「明確集」(crisp set)。
设 为 上的模糊集(记作 ),任取 ,则
- ,
称为的截集,而称为阈值或置信水平。将上式中的替换为,记为,称为强截集。
截集和强截集都是经典集合。此外,显然为的核,即;如果,则称为正规模糊集,否则称为非正规模糊集。
截积是数与模糊集的积:
设,,则,与的截积(或称为截集的数乘,记为)定义为:
根据定义,截积仍是上的模糊集合。
分解定理:
设,则
即任一模糊集都可以表达为一族简单模糊集的并。也即,一个模糊集可以由其自身分解出的集合套而“拼成”。
表现定理:
设为上的任何一个集合套,则
是上的一个模糊集,且,有
(1)
(2)
即任一集合套都能拼成一个模糊集。
一个模糊集的模糊度衡量、反映了 A 的模糊程度,一个直观的定义是这样的:
设映射满足下述5条性质:
- 清晰性:当且仅当。(经典集的模糊度恒为0。)
- 模糊性:当且仅当有。(隶属度都为0.5的模糊集最模糊。)
- 单调性:,若,或者,则。
- 对称性:,有。(补集的模糊度相等。)
- 可加性:。
则称是定义在上的模糊度函数,而为模糊集的模糊度。
可以证明符合上述定义的模糊度是存在的[4],一个常用的公式(分别针对有限和无限论域)就是
其中是参数,称为 Minkowski 模糊度。特别地,当的时候称为 Hamming 模糊度或 Kaufmann 模糊指标,当的时候称为 Euclid 模糊度。
是輿集的一種。
用函數定義,包含下列3項特性稱為模糊測度:
①
---函數代0值,表示沒有值為空值,用數學0來表示。函數代表示輿集全部帶進去了塞滿了,用1表示塞滿。
②若和, 則.
---是屬於的一部分,在裡面也可能跟一樣大,則
③If ∈, ⊆⊆…,then
---當屬於同時包含於,則將代入函數趨小所得的值等同於先趨小再代入函數所求得的值。
模糊量測(measures of fuzziness)
[编辑] - Zadeh 算子,即为并,即为交
- Hamacher 算子,其中是参数,等于1时转化为代数算子,等于2时转化为 Einstein 算子
- Yager 算子,其中是参数,等于1时转化为有界算子,趋于无穷时转化为 Zadeh 算子
- 算子,其中是参数
- Dobois-Prade 算子,其中是参数
参见集合代数和布尔代数。
主要算子的性质对比表如下(.
表示不满足,-
表示未验证):
算子 | 结合律 | 交换律 | 分配律 | 互补律 | 同一律 | 幂等律 | 支配律 | 吸收律 | 双重否定律 | 德·摩根律 |
Zedah | √ | √ | √ | . | √ | √ | √ | √ | √ | √ |
代数 | √ | √ | . | . | √ | . | √ | . | - | √ |
有界 | √ | √ | . | √ | √ | . | √ | √ | - | √ |
线性补偿是指:[5]
算子的并运算 | 幂等律 | 排中律 | 分配律 | 结合律 | 线性补偿 |
Zadeh | √ | . | √ | √ | . |
代数 | . | . | . | √ | . |
有界 | . | √ | . | . | √ |
Hamacher r = 0 | . | . | . | √ | . |
Yager | . | . | . | √ | . |
Hamacher | . | . | . | √ | . |
Dobois-Prade | . | . | . | √ | . |
可以使用一般的度量理论来描述模糊集之间的距离。在这个意义上,我们需要在模糊幂集上建立一个度量,此外,我们还可能需要将此度量标准化,也即映射到区间上。例如可以这样来标准化 Minkowski 距离:
另一种是使用贴近度概念。在某种意义上,贴近度就是 1 - 距离(这里的距离是上述标准化意义上的距离)。而之所以应用这个变换,是考虑到“度”的概念的直觉反映——距离越近,贴近的程度显然越“高”,因此它恰为距离的反数。
除了距离外,还有一些与模糊集的特殊操作有关系的贴近度定义。
- ^ 要注意,严格地说,模糊集或子集是映射所确定的序对集,但由于模糊子集完全由其隶属函数所确定,因而我们不区分映射和映射所确定的序对集,而总是直接把模糊子集定义为一个满足上述定义的映射。
- ^ L. A. Zadeh (1965) "Fuzzy sets" 互联网档案馆的存檔,存档日期2007-11-27.. Information and Control 8 (3) 338–353.
- ^ D. Dubois and H. Prade (1988) Fuzzy Sets and Systems. Academic Press, New York.
- ^ 陈水利等,模糊集理论及其应用,科学出版社,2005年,第20页。
- ^ Etienne E. Kerre 等,模糊集理论与近似推理,武汉大学出版社,2004年,第103页。