Linguaggio ricorsivo
In matematica, logica e informatica teorica, i linguaggi decidibili o ricorsivi sono una classe di linguaggi formali che corrisponde alla classe dei problemi decidibili. Esistono due definizioni principali equivalenti per questa classe:
- Un linguaggio ricorsivo è un linguaggio per il quale esiste una macchina di Turing che, data una qualsiasi stringa di input, termina accettando la stringa se essa appartiene al linguaggio, e termina rifiutando la stringa in caso contrario.
- Un linguaggio ricorsivo è un sottoinsieme ricorsivo dell'insieme di tutte le possibili stringhe sull'alfabeto del linguaggio.
Tutti i linguaggi ricorsivi sono ricorsivamente enumerabili. Sono ricorsivi tutti i linguaggi regolari, liberi dal contesto e dipendenti dal contesto. È degno di nota il fatto che questa categoria non abbia un corrispondente diretto nella classificazione di Chomsky.
Proprietà di chiusura
[modifica | modifica wikitesto]L'insieme dei linguaggi ricorsivi è chiuso rispetto alle seguenti operazioni:
- star di Kleene
- omomorfismo (purché non si utilizzi la stringa vuota ε)
- concatenazione
- unione
- intersezione
- complemento
- (per via di 5 e 6) differenza