Metodo delle differenze finite
In matematica, il metodo delle differenze finite è una strategia utilizzata per risolvere numericamente equazioni differenziali che, nelle sue varianti, si basa sull'approssimazione delle derivate con equazioni alle differenze finite. Viene utilizzato prevalentemente per equazioni differenziali ordinarie, anche se il metodo viene sfruttato come schema di avanzamento nel tempo per problemi alle derivate parziali.
Derivazione dal polinomio di Taylor
[modifica | modifica wikitesto]Si consideri una funzione di cui si vogliono approssimare le derivate, e si supponga che, grazie al teorema di Taylor, si possa costruire la serie di Taylor:
dove denota il fattoriale di , mentre è un termine che denota la differenza tra la funzione originale e il polinomio di Taylor di grado . Si deriva quindi l'approssimazione per la prima derivata di troncando il polinomio:
Ponendo si ha:
Dividendo per :
e risolvendo in funzione di f'(a):
Se si assume che è sufficientemente piccola, l'approssimazione per la prima derivata di è:
Ordine di convergenza e differenze finite compatte
[modifica | modifica wikitesto]Se la funzione è abbastanza regolare, si può scriverla come serie di Taylor col resto nella forma di Lagrange:
Da qui portando a primo membro e dividendo per si ottiene che l'approssimazione di data precedentemente ha un errore di ordine uno rispetto ad . Se la funzione è più regolare, si può sviluppare ad esempio in serie di Taylor al secondo ordine sia in avanti che all'indietro:
dove sta fra e mentre sta tra e . Se ora si considera la differenza tra la prima e la seconda equazione, si ottiene la differenza finita centrata per la derivata prima:
- =
che si vede essere di ordine due rispetto ad .
Si può generalizzare l'idea e pensare di prendere una combinazione lineare di espansioni in serie di Taylor di in punti del tipo , sistemando i coefficienti della combinazione lineare in modo da elidere i termini di troppo e tenere solo quello relativo alla derivata che si vuole approssimare, e il termine di grado più alto (che dà l'ordine di convergenza).
Fin qui abbiamo parlato di differenze finite classiche, ma possono essere costruiti altri schemi, detti delle differenze finite compatte, che si possono usare per approssimare derivate di qualunque ordine, a patto di supporre abbastanza regolare, di avere a disposizione un numero di nodi sufficiente in cui si conoscono i valori di u e delle sue derivate.
Esempio
[modifica | modifica wikitesto]Si vuole approssimare la derivata seconda con un'accuratezza di ordine 2. Si scrive dunque
Moltiplicando la prima equazione per , la seconda per , la terza per , la quarta per ; e quindi sommando, si ottiene (per semplicità di notazioni si indica con il valore di in ):
Si deve ora imporre che resti, a secondo membro, solo il termine relativo alla derivata seconda, quindi annulliamo tutti i coefficienti per le altre derivate. Si pone quindi:
in modo che dividendo per si ottenga:
che è di ordine due, come era richiesto.
Bibliografia
[modifica | modifica wikitesto]- (EN) George Boole Treatise on the calculus of finite differences (London, MacMillan, 1880)
- (EN) Lewis Fry Richardson The Approximate Arithmetical Solution by Finite Differences of Physical Problems involving Differential Equations, with an Application to the Stresses in a Masonry Dam Philosophical Transactions of the Royal Society A, 210, p. 307 (1911).
- (DE) N. E. Norlund, Neuere Untersuchungen über Differenzengleichungen in Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen Band 2, T.3, H.2, pp. 675–717 (1922)
- (DE) R. Courant, K. Friedrichs e H. Lewy Über die partiellen Differenzengleichungen der mathematischen Physik Math. Ann. 100, 32 (1928); traduzione in inglese: On the partial difference equations of Mathematical Physics IBM Journal of Research and Development 11, p. 215 (1967)
- (EN) L. M. Milne-Thomson The Calculus Of Finite Differences (London, MacMillan, 1933)
- (EN) M. Abramowitz e I. Stegun Handbook of Mathematical Functions (New York, Dover, 1972) pp. 882-885
Voci correlate
[modifica | modifica wikitesto]- Coefficienti del metodo delle differenze finite
- Differenza finita
- Equazione alle differenze
- Metodo di Lax-Wendroff
- Relazione di ricorrenza
Altri progetti
[modifica | modifica wikitesto]- Wikimedia Commons contiene immagini o altri file su metodo delle differenze finite
Collegamenti esterni
[modifica | modifica wikitesto]- Salvatore Pincherle, DIFFERENZE, CALCOLO DELLE, in Enciclopedia Italiana, Istituto dell'Enciclopedia Italiana, 1931.
- differenze finite, in Enciclopedia della Matematica, Istituto dell'Enciclopedia Italiana, 2013.
- (EN) finite difference method, su Enciclopedia Britannica, Encyclopædia Britannica, Inc.
- (EN) LLoyd N. Trefethen Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations
- (EN) Finite-Difference Method (see and listen to lecture 9), su emlab.utep.edu. URL consultato il 21 settembre 2014 (archiviato dall'url originale il 2 marzo 2014).
- (EN) List of Internet Resources for the Finite Difference Method for PDEs, su math.fullerton.edu. URL consultato il 21 settembre 2014 (archiviato dall'url originale il 18 agosto 2006).
- (EN) Finite Difference Method of Solving ODEs (Boundary Value Problems) Notes, PPT, Maple, Mathcad, Matlab, Mathematica, su numericalmethods.eng.usf.edu.
- (EN) Lecture Notes Shih-Hung Chen, National Central University
- (EN) Randall J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations, SIAM, 2007.
- (EN) Finite Difference Method, su adeptscience.co.uk. URL consultato il 21 settembre 2014 (archiviato dall'url originale il 26 febbraio 2012).
- (EN) Finite Difference Method for Boundary Value Problems, su math.fullerton.edu. URL consultato il 21 settembre 2014 (archiviato dall'url originale l'8 luglio 2013).
- (EN) Finite Difference Methodology in Materials Science, su composite-agency.com. URL consultato il 21 settembre 2014 (archiviato dall'url originale il 7 febbraio 2012).
Controllo di autorità | Thesaurus BNCF 58948 · LCCN (EN) sh85048348 · GND (DE) 4194626-1 · BNF (FR) cb13564043x (data) · J9U (EN, HE) 987007531228905171 · NDL (EN, JA) 00569934 |
---|