Integration for Grassmann variables
In mathematical physics , the Berezin integral , named after Felix Berezin , (also known as Grassmann integral , after Hermann Grassmann ), is a way to define integration for functions of Grassmann variables (elements of the exterior algebra ). It is not an integral in the Lebesgue sense; the word "integral" is used because the Berezin integral has properties analogous to the Lebesgue integral and because it extends the path integral in physics, where it is used as a sum over histories for fermions .
Let Λ n {\displaystyle \Lambda ^{n}} be the exterior algebra of polynomials in anticommuting elements θ 1 , … , θ n {\displaystyle \theta _{1},\dots ,\theta _{n}} over the field of complex numbers. (The ordering of the generators θ 1 , … , θ n {\displaystyle \theta _{1},\dots ,\theta _{n}} is fixed and defines the orientation of the exterior algebra.)
The Berezin integral over the sole Grassmann variable θ = θ 1 {\displaystyle \theta =\theta _{1}} is defined to be a linear functional
∫ [ a f ( θ ) + b g ( θ ) ] d θ = a ∫ f ( θ ) d θ + b ∫ g ( θ ) d θ , a , b ∈ C {\displaystyle \int [af(\theta )+bg(\theta )]\,d\theta =a\int f(\theta )\,d\theta +b\int g(\theta )\,d\theta ,\quad a,b\in \mathbb {C} } where we define
∫ θ d θ = 1 , ∫ d θ = 0 {\displaystyle \int \theta \,d\theta =1,\qquad \int \,d\theta =0} so that :
∫ ∂ ∂ θ f ( θ ) d θ = 0. {\displaystyle \int {\frac {\partial }{\partial \theta }}f(\theta )\,d\theta =0.} These properties define the integral uniquely and imply
∫ ( a θ + b ) d θ = a , a , b ∈ C . {\displaystyle \int (a\theta +b)\,d\theta =a,\quad a,b\in \mathbb {C} .} Take note that f ( θ ) = a θ + b {\displaystyle f(\theta )=a\theta +b} is the most general function of θ {\displaystyle \theta } because Grassmann variables square to zero, so f ( θ ) {\displaystyle f(\theta )} cannot have non-zero terms beyond linear order.
The Berezin integral on Λ n {\displaystyle \Lambda ^{n}} is defined to be the unique linear functional ∫ Λ n ⋅ d θ {\displaystyle \int _{\Lambda ^{n}}\cdot {\textrm {d}}\theta } with the following properties:
∫ Λ n θ n ⋯ θ 1 d θ = 1 , {\displaystyle \int _{\Lambda ^{n}}\theta _{n}\cdots \theta _{1}\,\mathrm {d} \theta =1,} ∫ Λ n ∂ f ∂ θ i d θ = 0 , i = 1 , … , n {\displaystyle \int _{\Lambda ^{n}}{\frac {\partial f}{\partial \theta _{i}}}\,\mathrm {d} \theta =0,\ i=1,\dots ,n} for any f ∈ Λ n , {\displaystyle f\in \Lambda ^{n},} where ∂ / ∂ θ i {\displaystyle \partial /\partial \theta _{i}} means the left or the right partial derivative. These properties define the integral uniquely.
Notice that different conventions exist in the literature: Some authors define instead[ 1]
∫ Λ n θ 1 ⋯ θ n d θ := 1. {\displaystyle \int _{\Lambda ^{n}}\theta _{1}\cdots \theta _{n}\,\mathrm {d} \theta :=1.} The formula
∫ Λ n f ( θ ) d θ = ∫ Λ 1 ( ⋯ ∫ Λ 1 ( ∫ Λ 1 f ( θ ) d θ 1 ) d θ 2 ⋯ ) d θ n {\displaystyle \int _{\Lambda ^{n}}f(\theta )\,\mathrm {d} \theta =\int _{\Lambda ^{1}}\left(\cdots \int _{\Lambda ^{1}}\left(\int _{\Lambda ^{1}}f(\theta )\,\mathrm {d} \theta _{1}\right)\,\mathrm {d} \theta _{2}\cdots \right)\mathrm {d} \theta _{n}} expresses the Fubini law. On the right-hand side, the interior integral of a monomial f = g ( θ ′ ) θ 1 {\displaystyle f=g(\theta ')\theta _{1}} is set to be g ( θ ′ ) , {\displaystyle g(\theta '),} where θ ′ = ( θ 2 , … , θ n ) {\displaystyle \theta '=\left(\theta _{2},\ldots ,\theta _{n}\right)} ; the integral of f = g ( θ ′ ) {\displaystyle f=g(\theta ')} vanishes. The integral with respect to θ 2 {\displaystyle \theta _{2}} is calculated in the similar way and so on.
Change of Grassmann variables [ edit ] Let θ i = θ i ( ξ 1 , … , ξ n ) , i = 1 , … , n , {\displaystyle \theta _{i}=\theta _{i}\left(\xi _{1},\ldots ,\xi _{n}\right),\ i=1,\ldots ,n,} be odd polynomials in some antisymmetric variables ξ 1 , … , ξ n {\displaystyle \xi _{1},\ldots ,\xi _{n}} . The Jacobian is the matrix
D = { ∂ θ i ∂ ξ j , i , j = 1 , … , n } , {\displaystyle D=\left\{{\frac {\partial \theta _{i}}{\partial \xi _{j}}},\ i,j=1,\ldots ,n\right\},} where ∂ / ∂ ξ j {\displaystyle \partial /\partial \xi _{j}} refers to the right derivative ( ∂ ( θ 1 θ 2 ) / ∂ θ 2 = θ 1 , ∂ ( θ 1 θ 2 ) / ∂ θ 1 = − θ 2 {\displaystyle \partial (\theta _{1}\theta _{2})/\partial \theta _{2}=\theta _{1},\;\partial (\theta _{1}\theta _{2})/\partial \theta _{1}=-\theta _{2}} ). The formula for the coordinate change reads
∫ f ( θ ) d θ = ∫ f ( θ ( ξ ) ) ( det D ) − 1 d ξ . {\displaystyle \int f(\theta )\,\mathrm {d} \theta =\int f(\theta (\xi ))(\det D)^{-1}\,\mathrm {d} \xi .} Integrating even and odd variables [ edit ] Consider now the algebra Λ m ∣ n {\displaystyle \Lambda ^{m\mid n}} of functions of real commuting variables x = x 1 , … , x m {\displaystyle x=x_{1},\ldots ,x_{m}} and of anticommuting variables θ 1 , … , θ n {\displaystyle \theta _{1},\ldots ,\theta _{n}} (which is called the free superalgebra of dimension ( m | n ) {\displaystyle (m|n)} ). Intuitively, a function f = f ( x , θ ) ∈ Λ m ∣ n {\displaystyle f=f(x,\theta )\in \Lambda ^{m\mid n}} is a function of m even (bosonic, commuting) variables and of n odd (fermionic, anti-commuting) variables. More formally, an element f = f ( x , θ ) ∈ Λ m ∣ n {\displaystyle f=f(x,\theta )\in \Lambda ^{m\mid n}} is a function of the argument x {\displaystyle x} that varies in an open set X ⊂ R m {\displaystyle X\subset \mathbb {R} ^{m}} with values in the algebra Λ n . {\displaystyle \Lambda ^{n}.} Suppose that this function is continuous and vanishes in the complement of a compact set K ⊂ R m . {\displaystyle K\subset \mathbb {R} ^{m}.} The Berezin integral is the number
∫ Λ m ∣ n f ( x , θ ) d θ d x = ∫ R m d x ∫ Λ n f ( x , θ ) d θ . {\displaystyle \int _{\Lambda ^{m\mid n}}f(x,\theta )\,\mathrm {d} \theta \,\mathrm {d} x=\int _{\mathbb {R} ^{m}}\,\mathrm {d} x\int _{\Lambda ^{n}}f(x,\theta )\,\mathrm {d} \theta .} Change of even and odd variables [ edit ] Let a coordinate transformation be given by x i = x i ( y , ξ ) , i = 1 , … , m ; θ j = θ j ( y , ξ ) , j = 1 , … , n , {\displaystyle x_{i}=x_{i}(y,\xi ),\ i=1,\ldots ,m;\ \theta _{j}=\theta _{j}(y,\xi ),j=1,\ldots ,n,} where x i {\displaystyle x_{i}} are even and θ j {\displaystyle \theta _{j}} are odd polynomials of ξ {\displaystyle \xi } depending on even variables y . {\displaystyle y.} The Jacobian matrix of this transformation has the block form:
J = ∂ ( x , θ ) ∂ ( y , ξ ) = ( A B C D ) , {\displaystyle \mathrm {J} ={\frac {\partial (x,\theta )}{\partial (y,\xi )}}={\begin{pmatrix}A&B\\C&D\end{pmatrix}},} where each even derivative ∂ / ∂ y j {\displaystyle \partial /\partial y_{j}} commutes with all elements of the algebra Λ m ∣ n {\displaystyle \Lambda ^{m\mid n}} ; the odd derivatives commute with even elements and anticommute with odd elements. The entries of the diagonal blocks A = ∂ x / ∂ y {\displaystyle A=\partial x/\partial y} and D = ∂ θ / ∂ ξ {\displaystyle D=\partial \theta /\partial \xi } are even and the entries of the off-diagonal blocks B = ∂ x / ∂ ξ , C = ∂ θ / ∂ y {\displaystyle B=\partial x/\partial \xi ,\ C=\partial \theta /\partial y} are odd functions, where ∂ / ∂ ξ j {\displaystyle \partial /\partial \xi _{j}} again mean right derivatives .
When the function D {\displaystyle D} is invertible in Λ m ∣ n , {\displaystyle \Lambda ^{m\mid n},}
J = ∂ ( x , θ ) ∂ ( y , ξ ) = ( A B C D ) = ( I B 0 D ) ( A − B D − 1 C 0 D − 1 C I ) {\displaystyle \mathrm {J} ={\frac {\partial (x,\theta )}{\partial (y,\xi )}}={\begin{pmatrix}A&B\\C&D\end{pmatrix}}={\begin{pmatrix}I&B\\0&D\end{pmatrix}}{\begin{pmatrix}A-BD^{-1}C&0\\D^{-1}C&I\end{pmatrix}}}
So we have the Berezinian (or superdeterminant ) of the matrix J {\displaystyle \mathrm {J} } , which is the even function
Ber J = det ( A − B D − 1 C ) ( det D ) − 1 {\displaystyle \operatorname {Ber} \mathrm {J} =\det \left(A-BD^{-1}C\right)(\det D)^{-1}} Suppose that the real functions x i = x i ( y , 0 ) {\displaystyle x_{i}=x_{i}(y,0)} define a smooth invertible map F : Y → X {\displaystyle F:Y\to X} of open sets X , Y {\displaystyle X,Y} in R m {\displaystyle \mathbb {R} ^{m}} and the linear part of the map ξ ↦ θ = θ ( y , ξ ) {\displaystyle \xi \mapsto \theta =\theta (y,\xi )} is invertible for each y ∈ Y . {\displaystyle y\in Y.} The general transformation law for the Berezin integral reads
∫ Λ m ∣ n f ( x , θ ) d θ d x = ∫ Λ m ∣ n f ( x ( y , ξ ) , θ ( y , ξ ) ) ε Ber J d ξ d y = ∫ Λ m ∣ n f ( x ( y , ξ ) , θ ( y , ξ ) ) ε det ( A − B D − 1 C ) det D d ξ d y , {\displaystyle {\begin{aligned}&\int _{\Lambda ^{m\mid n}}f(x,\theta )\,\mathrm {d} \theta \,\mathrm {d} x=\int _{\Lambda ^{m\mid n}}f(x(y,\xi ),\theta (y,\xi ))\varepsilon \operatorname {Ber} \mathrm {J} \,\mathrm {d} \xi \,\mathrm {d} y\\[6pt]={}&\int _{\Lambda ^{m\mid n}}f(x(y,\xi ),\theta (y,\xi ))\varepsilon {\frac {\det \left(A-BD^{-1}C\right)}{\det D}}\,\mathrm {d} \xi \,\mathrm {d} y,\end{aligned}}} where ε = s g n ( det ∂ x ( y , 0 ) / ∂ y {\displaystyle \varepsilon =\mathrm {sgn} (\det \partial x(y,0)/\partial y} ) is the sign of the orientation of the map F . {\displaystyle F.} The superposition f ( x ( y , ξ ) , θ ( y , ξ ) ) {\displaystyle f(x(y,\xi ),\theta (y,\xi ))} is defined in the obvious way, if the functions x i ( y , ξ ) {\displaystyle x_{i}(y,\xi )} do not depend on ξ . {\displaystyle \xi .} In the general case, we write x i ( y , ξ ) = x i ( y , 0 ) + δ i , {\displaystyle x_{i}(y,\xi )=x_{i}(y,0)+\delta _{i},} where δ i , i = 1 , … , m {\displaystyle \delta _{i},i=1,\ldots ,m} are even nilpotent elements of Λ m ∣ n {\displaystyle \Lambda ^{m\mid n}} and set
f ( x ( y , ξ ) , θ ) = f ( x ( y , 0 ) , θ ) + ∑ i ∂ f ∂ x i ( x ( y , 0 ) , θ ) δ i + 1 2 ∑ i , j ∂ 2 f ∂ x i ∂ x j ( x ( y , 0 ) , θ ) δ i δ j + ⋯ , {\displaystyle f(x(y,\xi ),\theta )=f(x(y,0),\theta )+\sum _{i}{\frac {\partial f}{\partial x_{i}}}(x(y,0),\theta )\delta _{i}+{\frac {1}{2}}\sum _{i,j}{\frac {\partial ^{2}f}{\partial x_{i}\,\partial x_{j}}}(x(y,0),\theta )\delta _{i}\delta _{j}+\cdots ,} where the Taylor series is finite.
The following formulas for Gaussian integrals are used often in the path integral formulation of quantum field theory :
∫ exp [ − θ T A η ] d θ d η = det A {\displaystyle \int \exp \left[-\theta ^{T}A\eta \right]\,d\theta \,d\eta =\det A} with A {\displaystyle A} being a complex n × n {\displaystyle n\times n} matrix.
∫ exp [ − 1 2 θ T M θ ] d θ = { P f M n even 0 n odd {\displaystyle \int \exp \left[-{\tfrac {1}{2}}\theta ^{T}M\theta \right]\,d\theta ={\begin{cases}\mathrm {Pf} \,M&n{\mbox{ even}}\\0&n{\mbox{ odd}}\end{cases}}} with M {\displaystyle M} being a complex skew-symmetric n × n {\displaystyle n\times n} matrix, and P f M {\displaystyle \mathrm {Pf} \,M} being the Pfaffian of M {\displaystyle M} , which fulfills ( P f M ) 2 = det M {\displaystyle (\mathrm {Pf} \,M)^{2}=\det M} .
In the above formulas the notation d θ = d θ 1 ⋯ d θ n {\displaystyle d\theta =d\theta _{1}\cdots \,d\theta _{n}} is used. From these formulas, other useful formulas follow (See Appendix A in[ 2] ) :
∫ exp [ θ T A η + θ T J + K T η ] d η 1 d θ 1 … d η n d θ n = det A exp [ − K T A − 1 J ] {\displaystyle \int \exp \left[\theta ^{T}A\eta +\theta ^{T}J+K^{T}\eta \right]\,d\eta _{1}\,d\theta _{1}\dots d\eta _{n}d\theta _{n}=\det A\,\,\exp[-K^{T}A^{-1}J]} with A {\displaystyle A} being an invertible n × n {\displaystyle n\times n} matrix. Note that these integrals are all in the form of a partition function .
Berezin integral was probably first presented by David John Candlin in 1956.[ 3] Later it was independently discovered by Felix Berezin in 1966.[ 4]
Unfortunately Candlin's article failed to attract notice, and has been buried in oblivion. Berezin's work came to be widely known, and has almost been cited universally,[ footnote 1] becoming an indispensable tool to treat quantum field theory of fermions by functional integral.
Other authors contributed to these developments, including the physicists Khalatnikov[ 9] (although his paper contains mistakes), Matthews and Salam,[ 10] and Martin.[ 11]
^ For example many famous textbooks of quantum field theory cite Berezin.[ 5] [ 6] [ 7] One exception was Stanley Mandelstam who is said to have used to cite Candlin's work.[ 8] ^ Mirror symmetry . Hori, Kentaro. Providence, RI: American Mathematical Society. 2003. p. 155. ISBN 0-8218-2955-6 . OCLC 52374327 .{{cite book }}
: CS1 maint: others (link ) ^ S. Caracciolo, A. D. Sokal and A. Sportiello, Algebraic/combinatorial proofs of Cayley-type identities for derivatives of determinants and pfaffians, Advances in Applied Mathematics, Volume 50, Issue 4, 2013, https://doi.org/10.1016/j.aam.2012.12.001 ; https://arxiv.org/abs/1105.6270 ^ D.J. Candlin (1956). "On Sums over Trajectories for Systems With Fermi Statistics". Nuovo Cimento . 4 (2): 231–239. Bibcode :1956NCim....4..231C . doi :10.1007/BF02745446 . S2CID 122333001 . ^ A. Berezin, The Method of Second Quantization , Academic Press, (1966) ^ Itzykson, Claude; Zuber, Jean Bernard (1980). Quantum field theory . McGraw-Hill International Book Co. Chap 9, Notes. ISBN 0070320713 . ^ Peskin, Michael Edward; Schroeder, Daniel V. (1995). An introduction to quantum field theory . Reading: Addison-Wesley. Sec 9.5. ^ Weinberg, Steven (1995). The Quantum Theory of Fields . Vol. 1. Cambridge University Press. Chap 9, Bibliography. ISBN 0521550017 . ^ Ron Maimon (2012-06-04). "What happened to David John Candlin?" . physics.stackexchange.com. Retrieved 2024-04-08 . ^ Khalatnikov, I.M. (1955). "Predstavlenie funkzij Grina v kvantovoj elektrodinamike v forme kontinualjnyh integralov" [The Representation of Green's Function in Quantum Electrodynamics in the Form of Continual Integrals] (PDF) . Journal of Experimental and Theoretical Physics (in Russian). 28 (3): 633. Archived from the original (PDF) on 2021-04-19. Retrieved 2019-06-23 . ^ Matthews, P. T.; Salam, A. (1955). "Propagators of quantized field". Il Nuovo Cimento . 2 (1). Springer Science and Business Media LLC: 120–134. Bibcode :1955NCimS...2..120M . doi :10.1007/bf02856011 . ISSN 0029-6341 . S2CID 120719536 . ^ Martin, J. L. (23 June 1959). "The Feynman principle for a Fermi system". Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences . 251 (1267). The Royal Society: 543–549. Bibcode :1959RSPSA.251..543M . doi :10.1098/rspa.1959.0127 . ISSN 2053-9169 . S2CID 123545904 . Theodore Voronov: Geometric integration theory on Supermanifolds , Harwood Academic Publisher, ISBN 3-7186-5199-8 Berezin, Felix Alexandrovich: Introduction to Superanalysis , Springer Netherlands, ISBN 978-90-277-1668-2