List of space groups

There are 230 space groups in three dimensions, given by a number index, and a full name in Hermann–Mauguin notation, and a short name (international short symbol). The long names are given with spaces for readability. The groups each have a point group of the unit cell.

Symbols

[edit]

In Hermann–Mauguin notation, space groups are named by a symbol combining the point group identifier with the uppercase letters describing the lattice type. Translations within the lattice in the form of screw axes and glide planes are also noted, giving a complete crystallographic space group.

These are the Bravais lattices in three dimensions:

  • P primitive
  • I body centered (from the German Innenzentriert)
  • F face centered (from the German Flächenzentriert)
  • A centered on A faces only
  • B centered on B faces only
  • C centered on C faces only
  • R rhombohedral

A reflection plane m within the point groups can be replaced by a glide plane, labeled as a, b, or c depending on which axis the glide is along. There is also the n glide, which is a glide along the half of a diagonal of a face, and the d glide, which is along a quarter of either a face or space diagonal of the unit cell. The d glide is often called the diamond glide plane as it features in the diamond structure.

  • , , or : glide translation along half the lattice vector of this face
  • : glide translation along half the diagonal of this face
  • : glide planes with translation along a quarter of a face diagonal
  • : two glides with the same glide plane and translation along two (different) half-lattice vectors.[note 1]

A gyration point can be replaced by a screw axis denoted by a number, n, where the angle of rotation is . The degree of translation is then added as a subscript showing how far along the axis the translation is, as a portion of the parallel lattice vector. For example, 21 is a 180° (twofold) rotation followed by a translation of 1/2 of the lattice vector. 31 is a 120° (threefold) rotation followed by a translation of 1/3 of the lattice vector. The possible screw axes are: 21, 31, 32, 41, 42, 43, 61, 62, 63, 64, and 65.

Wherever there is both a rotation or screw axis n and a mirror or glide plane m along the same crystallographic direction, they are represented as a fraction or n/m. For example, 41/a means that the crystallographic axis in question contains both a 41 screw axis as well as a glide plane along a.

In Schoenflies notation, the symbol of a space group is represented by the symbol of corresponding point group with additional superscript. The superscript doesn't give any additional information about symmetry elements of the space group, but is instead related to the order in which Schoenflies derived the space groups. This is sometimes supplemented with a symbol of the form which specifies the Bravais lattice. Here is the lattice system, and is the centering type.[2]

In Fedorov symbol, the type of space group is denoted as s (symmorphic ), h (hemisymmorphic), or a (asymmorphic). The number is related to the order in which Fedorov derived space groups. There are 73 symmorphic, 54 hemisymmorphic, and 103 asymmorphic space groups.

Symmorphic

[edit]

The 73 symmorphic space groups can be obtained as combination of Bravais lattices with corresponding point group. These groups contain the same symmetry elements as the corresponding point groups, for example, the space groups P4/mmm (, 36s) and I4/mmm (, 37s).

Hemisymmorphic

[edit]

The 54 hemisymmorphic space groups contain only axial combination of symmetry elements from the corresponding point groups. Hemisymmorphic space groups contain the axial combination 422, which are P4/mcc (, 35h), P4/nbm (, 36h), P4/nnc (, 37h), and I4/mcm (, 38h).

Asymmorphic

[edit]

The remaining 103 space groups are asymmorphic, for example, those derived from the point group 4/mmm ().

List of triclinic

[edit]
Triclinic Bravais lattice
Triclinic crystal system
Number Point group Orbifold Short name Full name Schoenflies Fedorov Shubnikov Fibrifold
1 1 P1 P 1 1s
2 1 P1 P 1 2s

List of monoclinic

[edit]
Monoclinic Bravais lattice
Simple (P) Base (C)
Monoclinic crystal system
Number Point group Orbifold Short name Full name(s) Schoenflies Fedorov Shubnikov Fibrifold (primary) Fibrifold (secondary)
3 2 P2 P 1 2 1 P 1 1 2 3s
4 P21 P 1 21 1 P 1 1 21 1a
5 C2 C 1 2 1 B 1 1 2 4s ,
6 m Pm P 1 m 1 P 1 1 m 5s
7 Pc P 1 c 1 P 1 1 b 1h ,
8 Cm C 1 m 1 B 1 1 m 6s ,
9 Cc C 1 c 1 B 1 1 b 2h ,
10 2/m P2/m P 1 2/m 1 P 1 1 2/m 7s
11 P21/m P 1 21/m 1 P 1 1 21/m 2a
12 C2/m C 1 2/m 1 B 1 1 2/m 8s ,
13 P2/c P 1 2/c 1 P 1 1 2/b 3h ,
14 P21/c P 1 21/c 1 P 1 1 21/b 3a ,
15 C2/c C 1 2/c 1 B 1 1 2/b 4h ,

List of orthorhombic

[edit]
Orthorhombic Bravais lattice
Simple (P) Body (I) Face (F) Base (A or C)
Orthorhombic crystal system
Number Point group Orbifold Short name Full name Schoenflies Fedorov Shubnikov Fibrifold (primary) Fibrifold (secondary)
16 222 P222 P 2 2 2 9s
17 P2221 P 2 2 21 4a
18 P21212 P 21 21 2 7a
19 P212121 P 21 21 21 8a
20 C2221 C 2 2 21 5a
21 C222 C 2 2 2 10s
22 F222 F 2 2 2 12s
23 I222 I 2 2 2 11s
24 I212121 I 21 21 21 6a
25 mm2 Pmm2 P m m 2 13s
26 Pmc21 P m c 21 9a ,
27 Pcc2 P c c 2 5h
28 Pma2 P m a 2 6h ,
29 Pca21 P c a 21 11a
30 Pnc2 P n c 2 7h ,
31 Pmn21 P m n 21 10a ,
32 Pba2 P b a 2 9h
33 Pna21 P n a 21 12a ,
34 Pnn2 P n n 2 8h
35 Cmm2 C m m 2 14s
36 Cmc21 C m c 21 13a ,
37 Ccc2 C c c 2 10h
38 Amm2 A m m 2 15s ,
39 Aem2 A b m 2 11h ,
40 Ama2 A m a 2 12h ,
41 Aea2 A b a 2 13h ,
42 Fmm2 F m m 2 17s
43 Fdd2 F d d 2 16h
44 Imm2 I m m 2 16s
45 Iba2 I b a 2 15h
46 Ima2 I m a 2 14h ,
47 Pmmm P 2/m 2/m 2/m 18s
48 Pnnn P 2/n 2/n 2/n 19h
49 Pccm P 2/c 2/c 2/m 17h
50 Pban P 2/b 2/a 2/n 18h
51 Pmma P 21/m 2/m 2/a 14a ,
52 Pnna P 2/n 21/n 2/a 17a ,
53 Pmna P 2/m 2/n 21/a 15a ,
54 Pcca P 21/c 2/c 2/a 16a ,
55 Pbam P 21/b 21/a 2/m 22a
56 Pccn P 21/c 21/c 2/n 27a
57 Pbcm P 2/b 21/c 21/m 23a ,
58 Pnnm P 21/n 21/n 2/m 25a
59 Pmmn P 21/m 21/m 2/n 24a
60 Pbcn P 21/b 2/c 21/n 26a ,
61 Pbca P 21/b 21/c 21/a 29a
62 Pnma P 21/n 21/m 21/a 28a ,
63 Cmcm C 2/m 2/c 21/m 18a ,
64 Cmce C 2/m 2/c 21/a 19a ,
65 Cmmm C 2/m 2/m 2/m 19s
66 Cccm C 2/c 2/c 2/m 20h
67 Cmme C 2/m 2/m 2/e 21h
68 Ccce C 2/c 2/c 2/e 22h
69 Fmmm F 2/m 2/m 2/m 21s
70 Fddd F 2/d 2/d 2/d 24h
71 Immm I 2/m 2/m 2/m 20s
72 Ibam I 2/b 2/a 2/m 23h
73 Ibca I 2/b 2/c 2/a 21a
74 Imma I 2/m 2/m 2/a 20a

List of tetragonal

[edit]
Tetragonal Bravais lattice
Simple (P) Body (I)
Tetragonal crystal system
Number Point group Orbifold Short name Full name Schoenflies Fedorov Shubnikov Fibrifold
75 4 P4 P 4 22s
76 P41 P 41 30a
77 P42 P 42 33a
78 P43 P 43 31a
79 I4 I 4 23s
80 I41 I 41 32a
81 4 P4 P 4 26s
82 I4 I 4 27s
83 4/m P4/m P 4/m 28s
84 P42/m P 42/m 41a
85 P4/n P 4/n 29h
86 P42/n P 42/n 42a
87 I4/m I 4/m 29s
88 I41/a I 41/a 40a
89 422 P422 P 4 2 2 30s
90 P4212 P4212 43a
91 P4122 P 41 2 2 44a
92 P41212 P 41 21 2 48a
93 P4222 P 42 2 2 47a