In algebraic number theory the n -th power residue symbol (for an integer n > 2) is a generalization of the (quadratic) Legendre symbol to n -th powers. These symbols are used in the statement and proof of cubic , quartic , Eisenstein , and related higher[ 1] reciprocity laws .[ 2]
Background and notation [ edit ] Let k be an algebraic number field with ring of integers O k {\displaystyle {\mathcal {O}}_{k}} that contains a primitive n -th root of unity ζ n . {\displaystyle \zeta _{n}.}
Let p ⊂ O k {\displaystyle {\mathfrak {p}}\subset {\mathcal {O}}_{k}} be a prime ideal and assume that n and p {\displaystyle {\mathfrak {p}}} are coprime (i.e. n ∉ p {\displaystyle n\not \in {\mathfrak {p}}} .)
The norm of p {\displaystyle {\mathfrak {p}}} is defined as the cardinality of the residue class ring (note that since p {\displaystyle {\mathfrak {p}}} is prime the residue class ring is a finite field ):
N p := | O k / p | . {\displaystyle \mathrm {N} {\mathfrak {p}}:=|{\mathcal {O}}_{k}/{\mathfrak {p}}|.} An analogue of Fermat's theorem holds in O k . {\displaystyle {\mathcal {O}}_{k}.} If α ∈ O k − p , {\displaystyle \alpha \in {\mathcal {O}}_{k}-{\mathfrak {p}},} then
α N p − 1 ≡ 1 mod p . {\displaystyle \alpha ^{\mathrm {N} {\mathfrak {p}}-1}\equiv 1{\bmod {\mathfrak {p}}}.} And finally, suppose N p ≡ 1 mod n . {\displaystyle \mathrm {N} {\mathfrak {p}}\equiv 1{\bmod {n}}.} These facts imply that
α N p − 1 n ≡ ζ n s mod p {\displaystyle \alpha ^{\frac {\mathrm {N} {\mathfrak {p}}-1}{n}}\equiv \zeta _{n}^{s}{\bmod {\mathfrak {p}}}} is well-defined and congruent to a unique n {\displaystyle n} -th root of unity ζ n s . {\displaystyle \zeta _{n}^{s}.}
This root of unity is called the n -th power residue symbol for O k , {\displaystyle {\mathcal {O}}_{k},} and is denoted by
( α p ) n = ζ n s ≡ α N p − 1 n mod p . {\displaystyle \left({\frac {\alpha }{\mathfrak {p}}}\right)_{n}=\zeta _{n}^{s}\equiv \alpha ^{\frac {\mathrm {N} {\mathfrak {p}}-1}{n}}{\bmod {\mathfrak {p}}}.} The n -th power symbol has properties completely analogous to those of the classical (quadratic) Jacobi symbol ( ζ {\displaystyle \zeta } is a fixed primitive n {\displaystyle n} -th root of unity):
( α p ) n = { 0 α ∈ p 1 α ∉ p and ∃ η ∈ O k : α ≡ η n mod p ζ α ∉ p and there is no such η {\displaystyle \left({\frac {\alpha }{\mathfrak {p}}}\right)_{n}={\begin{cases}0&\alpha \in {\mathfrak {p}}\\1&\alpha \not \in {\mathfrak {p}}{\text{ and }}\exists \eta \in {\mathcal {O}}_{k}:\alpha \equiv \eta ^{n}{\bmod {\mathfrak {p}}}\\\zeta &\alpha \not \in {\mathfrak {p}}{\text{ and there is no such }}\eta \end{cases}}} In all cases (zero and nonzero)
( α p ) n ≡ α N p − 1 n mod p . {\displaystyle \left({\frac {\alpha }{\mathfrak {p}}}\right)_{n}\equiv \alpha ^{\frac {\mathrm {N} {\mathfrak {p}}-1}{n}}{\bmod {\mathfrak {p}}}.} ( α p ) n ( β p ) n = ( α β p ) n {\displaystyle \left({\frac {\alpha }{\mathfrak {p}}}\right)_{n}\left({\frac {\beta }{\mathfrak {p}}}\right)_{n}=\left({\frac {\alpha \beta }{\mathfrak {p}}}\right)_{n}} α ≡ β mod p ⇒ ( α p ) n = ( β p ) n {\displaystyle \alpha \equiv \beta {\bmod {\mathfrak {p}}}\quad \Rightarrow \quad \left({\frac {\alpha }{\mathfrak {p}}}\right)_{n}=\left({\frac {\beta }{\mathfrak {p}}}\right)_{n}} All power residue symbols mod n are Dirichlet characters mod n , and the m -th power residue symbol only contains the m -th roots of unity , the m -th power residue symbol mod n exists if and only if m divides λ ( n ) {\displaystyle \lambda (n)} (the Carmichael lambda function of n ).
Relation to the Hilbert symbol [ edit ] The n -th power residue symbol is related to the Hilbert symbol ( ⋅ , ⋅ ) p {\displaystyle (\cdot ,\cdot )_{\mathfrak {p}}} for the prime p {\displaystyle {\mathfrak {p}}} by
( α p ) n = ( π , α ) p {\displaystyle \left({\frac {\alpha }{\mathfrak {p}}}\right)_{n}=(\pi ,\alpha )_{\mathfrak {p}}} in the case p {\displaystyle {\mathfrak {p}}} coprime to n , where π {\displaystyle \pi } is any uniformising element for the local field K p {\displaystyle K_{\mathfrak {p}}} .[ 3]
The n {\displaystyle n} -th power symbol may be extended to take non-prime ideals or non-zero elements as its "denominator", in the same way that the Jacobi symbol extends the Legendre symbol.
Any ideal a ⊂ O k {\displaystyle {\mathfrak {a}}\subset {\mathcal {O}}_{k}} is the product of prime ideals, and in one way only:
a = p 1 ⋯ p g . {\displaystyle {\mathfrak {a}}={\mathfrak {p}}_{1}\cdots {\mathfrak {p}}_{g}.} The n {\displaystyle n} -th power symbol is extended multiplicatively:
( α a ) n = ( α p 1 ) n ⋯ ( α p g ) n . {\displaystyle \left({\frac {\alpha }{\mathfrak {a}}}\right)_{n}=\left({\frac {\alpha }{{\mathfrak {p}}_{1}}}\right)_{n}\cdots \left({\frac {\alpha }{{\mathfrak {p}}_{g}}}\right)_{n}.} For 0 ≠ β ∈ O k {\displaystyle 0\neq \beta \in {\mathcal {O}}_{k}} then we define
( α β ) n := ( α ( β ) ) n , {\displaystyle \left({\frac {\alpha }{\beta }}\right)_{n}:=\left({\frac {\alpha }{(\beta )}}\right)_{n},} where ( β ) {\displaystyle (\beta )} is the principal ideal generated by β . {\displaystyle \beta .}
Analogous to the quadratic Jacobi symbol, this symbol is multiplicative in the top and bottom parameters.
If α ≡ β mod a {\displaystyle \alpha \equiv \beta {\bmod {\mathfrak {a}}}} then ( α a ) n = ( β a ) n . {\displaystyle \left({\tfrac {\alpha }{\mathfrak {a}}}\right)_{n}=\left({\tfrac {\beta }{\mathfrak {a}}}\right)_{n}.} ( α a ) n ( β a ) n = ( α β a ) n . {\displaystyle \left({\tfrac {\alpha }{\mathfrak {a}}}\right)_{n}\left({\tfrac {\beta }{\mathfrak {a}}}\right)_{n}=\left({\tfrac {\alpha \beta }{\mathfrak {a}}}\right)_{n}.} ( α a ) n ( α b ) n = ( α a b ) n . {\displaystyle \left({\tfrac {\alpha }{\mathfrak {a}}}\right)_{n}\left({\tfrac {\alpha }{\mathfrak {b}}}\right)_{n}=\left({\tfrac {\alpha }{\mathfrak {ab}}}\right)_{n}.} Since the symbol is always an n {\displaystyle n} -th root of unity, because of its multiplicativity it is equal to 1 whenever one parameter is an n {\displaystyle n} -th power; the converse is not true.
If α ≡ η n mod a {\displaystyle \alpha \equiv \eta ^{n}{\bmod {\mathfrak {a}}}} then ( α a ) n = 1. {\displaystyle \left({\tfrac {\alpha }{\mathfrak {a}}}\right)_{n}=1.} If ( α a ) n ≠ 1 {\displaystyle \left({\tfrac {\alpha }{\mathfrak {a}}}\right)_{n}\neq 1} then α {\displaystyle \alpha } is not an n {\displaystyle n} -th power modulo a . {\displaystyle {\mathfrak {a}}.} If ( α a ) n = 1 {\displaystyle \left({\tfrac {\alpha }{\mathfrak {a}}}\right)_{n}=1} then α {\displaystyle \alpha } may or may not be an n {\displaystyle n} -th power modulo a . {\displaystyle {\mathfrak {a}}.} Power reciprocity law [ edit ] The power reciprocity law , the analogue of the law of quadratic reciprocity , may be formulated in terms of the Hilbert symbols as[ 4]
( α β ) n ( β α ) n − 1 = ∏ p | n ∞ ( α , β ) p , {\displaystyle \left({\frac {\alpha }{\beta }}\right)_{n}\left({\frac {\beta }{\alpha }}\right)_{n}^{-1}=\prod _{{\mathfrak {p}}|n\infty }(\alpha ,\beta )_{\mathfrak {p}},} whenever α {\displaystyle \alpha } and β {\displaystyle \beta } are coprime.
^ Quadratic reciprocity deals with squares; higher refers to cubes, fourth, and higher powers. ^ All the facts in this article are in Lemmermeyer Ch. 4.1 and Ireland & Rosen Ch. 14.2 ^ Neukirch (1999) p. 336 ^ Neukirch (1999) p. 415 Gras, Georges (2003), Class field theory. From theory to practice , Springer Monographs in Mathematics, Berlin: Springer-Verlag , pp. 204–207, ISBN 3-540-44133-6 , Zbl 1019.11032 Ireland, Kenneth; Rosen, Michael (1990), A Classical Introduction to Modern Number Theory (Second edition) , New York: Springer Science+Business Media , ISBN 0-387-97329-X Lemmermeyer, Franz (2000), Reciprocity Laws: from Euler to Eisenstein , Springer Monographs in Mathematics, Berlin: Springer Science+Business Media , doi :10.1007/978-3-662-12893-0 , ISBN 3-540-66957-4 , MR 1761696 , Zbl 0949.11002 Neukirch, Jürgen (1999), Algebraic number theory , Grundlehren der Mathematischen Wissenschaften, vol. 322, Translated from the German by Norbert Schappacher, Berlin: Springer-Verlag , ISBN 3-540-65399-6 , Zbl 0956.11021