லெக்ராஞ்சியப் புள்ளி
வான விசையியலில், லெக்ராஞ்சியப் புள்ளிகள் (Lagrangian points) அல்லது லெக்ராஞ்சிப் புள்ளிகள், சுருங்க லெ-புள்ளிகள், அல்லது நிலை அலைவு புள்ளிகள்) எனப்படுபவை இரண்டு பெரும் வான்பொருட்களின் சுற்றுப்பாதை அமைப்பில் இரண்டு பெரும் வான்பொருட்களிலிருந்தும் அவற்றின் ஈர்ப்பு விசை தாக்கத்தால் ஓர் சிறிய வான்பொருள் நிலையான இடத்தை தக்கவைத்துக் கொள்ளக்கூடிய புள்ளிகளாகும். இந்த லெக்ராஞ்சியப் புள்ளிகளில் இரு பெரும் வான்பொருட்களின் ஈர்ப்புவிசைகளின் கூட்டுவிசை சிறுபொருள் அவற்றைச் சுற்ற தேவையான மையநோக்கு விசையைத் தருகின்றது. இரண்டு பெரிய வான்பொருட்களின் சுற்றுப்பாதை தளத்தில் இத்தகைய புள்ளிகள் ஐந்து உள்ளன. இவை லெ1,லெ2,லெ3,லெ4,லெ5 எனப் பெயரிடப்பட்டுள்ளன. இவற்றில் முதல் மூன்று இரு பெரும் பொருட்களையும் இணைக்கும் நேர்கோட்டில் உள்ளன; லெ4,லெ5 என்ற புள்ளிகள் இரண்டு பெரும்பொருட்களுடனும் சமபக்க முக்கோணி முனைகளில் உள்ளன. கடைசி இரு புள்ளிகளும் நிலையாக உள்ளதால் இரு பெரும் பொருட்களுடன் பிணைந்து சுழலும் ஆள்கூற்று முறைமையில் பொருளொன்று அவற்றை சுற்றலாம் என்பது உறுதியாகின்றது.
பல கோள்களுக்கு சூரியனுடனும் அக்கோளுடனும் லெ4, லெ5 புள்ளிகளில் சுற்றும் மறைமுக குறுங்கோள்கள் உள்ளன; வியாழனுக்கு இதுபோல மில்லியனுக்கும் கூடுதலாக பொருட்கள் உள்ளன. லெ1,லெ2 புள்ளிகளில் செயற்கைக்கோள்கள் ஞாயிறுக்கும் புவிக்கும் இடையேயும் புவிக்கும் நிலாவிற்கும் இடையேயும் பல பயன்பாடுகளுக்காக நிறுத்தப்பட்டுள்ளன. வருங்கால விண்வெளித் தேட்டங்களில் லெக்ராஞ்சியப் புள்ளிகள் பல செயற்பாடுகளுக்கு முன்மொழியப்பட்டுள்ளன.
வரலாறு
[தொகு]ஒரே நேர்கோட்டில் அமைந்துள்ள மூன்று லெக்ராஞ்சியப் புள்ளிகளை (லெ1, லெ2, லெ3) லியோனார்டு ஆய்லர் கண்டறிந்துள்ளார்; மற்ற இரண்டை லெக்ராஞ்சி கண்டுபிடிப்பதற்கு சில ஆண்டுகளுக்கு முன்னரே கண்டறிந்துள்ளார்.[1][2]
1772இல் ஜோசப் லூயி லாக்ராஞ்சி மூன்று பொருள் சிக்கலைக் குறித்த ஆய்வுரையை வெளியிட்டார். முதல் அத்தியாயத்தில் பொதுவான மூன்று பொருள் சிக்கலை ஆராய்ந்தார். அடுத்த இரண்டாவது அத்தியாயத்தில் இரண்டு சிறப்பு மூன்று பொருள் சிக்கல் - நிலைத்த தோற்றவித தீர்வை முன்வைத்தார். மூன்று பொருட்களும் வட்டச் சுற்றுப்பாதையில் நேர்கோட்டிலும் சம்பக்க முக்கோணமாகவும் அமையும் புள்ளிகளை நிரூபித்தார்.[3]
லெக்ராஞ்சியப் புள்ளிகள்
[தொகு]ஐந்து லெக்ராஞ்சியப் புள்ளிகள் கீழ்வருமாறு சுட்டப்பட்டு, வரையறுக்கப்படுகின்றன:
லெ1 புள்ளி இரு பெரும் திணிவுகள் தி1, தி2 வரையறுக்கும் நேர்கோட்டில் இரண்டுக்கும் இடையே அமைந்துள்ளது. இதுவே மிக எளிதாக உள்ளுணர்வாக தெளிந்துகொள்ளப்படும் லெக்ராஞ்சியப் புள்ளியாகும். தி1இன் ஈர்ப்புவிசையை தி2வின் ஈர்ப்பு விசை பகுதியும் குறைக்கின்றது.
- விளக்கம்: ஞாயிறை புவியை விட அருகில் சுற்றும் பொருள், புவியின் ஈர்ப்ப் விசையைக் கணக்கில் எடுக்காவிடில், புவியை விட குறைந்த நேரத்தில் சுற்றிவிடும். ஆனால் அப்பொருள் புவிக்கும் ஞாயிறுக்கும் இடையே ஒரே நேர்கோட்டில் இருந்தால் புவியின் ஈர்ப்புவிசை ஞாயிறின் ஈர்ப்பு விசையை சற்றே குறைக்கிறது; இதனால் அதன் சுற்றும் காலம் கூடுகின்றது. அந்தப் பொருள் புவிக்கு எவ்வளவுக்கெவ்வளவு அருகில் உள்ளதோ அவ்வளவுக்கவ்வளவு இந்த பாதிப்பு இருக்கும். எனவே புவியின் அருகே வர வர மூன்றாம் பொருளின் சுற்றுப்பாதை நேரம் கூடிக்கொண்டு போகும். லெ1 புள்ளியில், மூன்றாம் பொருளின் சுற்றுப்பாதை நேரமும் புவியின் சுற்றுப்பாதை நேரமும் சமனாக உள்ளது. லெ1 புள்ளி புவியிலிருந்து ஏறத்தாழ 1.5 மில்லியன் கி.மீ தொலைவில் உள்ளது.[4]
லெ2 புள்ளி இரு பெரும் திணிவுகளை இணைக்கும் நேர்கோட்டில் இரண்டில் சிறியவற்றிற்கு வெளியே உள்ளது. இங்கு இரண்டு பெரிய பொருட்களின் ஈர்ப்பு விசை இணைந்து பொருளின் மையநோக்கு விசைக்கு லெ2 புள்ளியில் சமனாகின்றது.
- விளக்கம்: ஞாயிறிலிருந்து புவியின் மறுபுறத்தில் உள்ள பொருட்களின் சுற்றுப்பாதை நேரம் பொதுவாக புவியினுடையதை விடக் கூடுதலாக இருக்கும். ஆனால் புவியின் கூடுதல் ஈர்ப்பினால் இந்த நேரம் குறைகின்றது. லெ2 புள்ளியில் பொருளின் சுற்றுப்பாதை நேரமும் புவியின் சுற்றுப்பாதை நேரமும் சமனாகின்றது. லெ1ஐப் போலவே லெ2 புள்ளியும் புவியிலிருந்து ஏறத்தாழ 1.5 மில்லியன் கிலோமீட்டர்கள் தொலைவில் அமைந்துள்ளது.
லெ3 புள்ளி இரு பெரும் திணிவுகளை இணைக்கும் நேர்கோட்டில் இரண்டில் பெரியதற்கு வெளியே உள்ளது.
- விளக்கம்: ஞாயிறு-புவி அமைப்பில் லெ3 புள்ளி ஞாயிறின் மறுபக்கத்தில் அமைந்துள்ளது; புவியின் சுற்றுப்பாதைக்கு சற்றே வெளியே ஆனால் ஞாயிறுக்கு அண்மித்து உள்ளது. (இந்த முரண் சூரியனும் புவியின் ஈர்ப்பு விசையால் தாக்கமுறுவதால் நிகழ்கின்றது. எனவே மூன்றாம் பொருள் புவி, ஞாயிறு இவற்றின் ஈர்ப்புமையத்தைச் சுற்றுகிறது. எனினும் இந்த ஈர்ப்பு மையம் ஞாயிறின் பொருண்மைக்குள்ளேயே உள்ளது.) லெ3 புள்ளியில், புவி,ஞாயிறின் இணைந்த ஈர்ப்புவிசை மூன்றாம் பொருளை புவியின் சுற்றுப்பாதை நேரத்திற்கு இணையாக சுற்ற வைக்கின்றது.
லெ4 புள்ளியும் லெ5 புள்ளியும் இரு பெரும் பொருட்களையும் இணைக்கின்ற நேர்கோட்டை பொது அடித்தளமாக்க் கொண்ட இரு சமபக்க முக்கோணிகளின் மூன்றாம் முனைகளில் அமைந்துள்ளன; இரண்டில் சிறியதின் சுற்றுப்பாதைக்கு முன்னால் இருப்பது லெ4 எனவும் பின்னால் இருப்பது லெ5 எனவும் குறிப்பிடப்படுகின்றன.
தி1/தி2 விகிதம் 24.96 விட கூடுதலாக இருப்பின் முக்கோணப் புள்ளிகள் (லெ4, லெ5) உறுதிச் சமநிலைகளாக அமையும்.[note 1][5] இந்நிலை ஞாயிறு–புவி அமைப்பு, ஞாயிறு–வியாழன் அமைப்பு, மற்றும் சிறிதளவில் புவி–நிலா அமைப்புகளில் நிலவுகின்றது. இந்தப் புள்ளிகளில் உள்ள வான்பொருள் கலைக்கப்பட்டால் இது இப்புள்ளியிலிருந்து நகரும்; ஆனால் இவ்வாறு கலைத்த காரணியின் (ஈர்ப்புவிசையோ, வளைவுந்தம் தூண்டிய வேகமோ) எதிர்மறை தாக்கமும் பாதிக்கப்பட்டு பொருளின் சுற்றுப்பாதையை வளைத்து அந்தப் புள்ளியை மையமாகக் கொண்டு சிவப்புக் காராமணியை ஒத்த சுற்றுப்பாதையில் சுற்றும்.
உறுதிச் சமநிலைநிலவும் லெ4, லெ5 புள்ளிகளைப் போலல்லாது லெ1, லெ2, லெ3 புள்ளிகளில் உறுதியிலாச் சமநிலை நிலவுகின்றது. லெ1–லெ3 புள்ளிகளில் ஏதாவது ஒன்றில் சுற்றும் எவ்வொருப் பொருளும் சுற்றுப்பாதையை விட்டு விலகும் தன்மையுடையன. எனவேதான் இந்தப் புள்ளிகளில் இயற்கையான வான்பொருட்களை காண்பது மிக அரிதாகும். இங்கு நிறுத்தப்படும் செயற்கை விண்வெளிநிலையங்கள் தங்கள் நிலையை பராமரிக்க நிலைநிறுத்த அமைப்புக்களை கொண்டிருக்க வேண்டும்.
குறிப்புகள்
[தொகு]- ↑ உண்மையில் ≈ 24.9599357944
மேற்சான்றுகள்
[தொகு]- ↑ Koon, W. S.; M. W. Lo; J. E. Marsden; S. D. Ross (2006). Dynamical Systems, the Three-Body Problem, and Space Mission Design. p. 9. (16MB)
- ↑ லியோனார்டு ஆய்லர், De motu rectilineo trium corporum se mutuo attrahentium (1765)
- ↑ Lagrange, Joseph-Louis (1867–92). "Tome 6, Chapitre II: Essai sur le problème des trois corps". Oeuvres de Lagrange (in பிரெஞ்சு). Gauthier-Villars. pp. 229–334.
- ↑ Cornish, Neil J. "The Lagrangian Points" (PDF). Archived from the original (PDF) on September 7, 2015. பார்க்கப்பட்ட நாள் 15 Dec 2015.
- ↑ The Lagrange PointsPDF, Neil J. Cornish with input from Jeremy Goodman
வெளி இணைப்புகள்
[தொகு]- Joseph-Louis, Comte Lagrange, from Oeuvres Tome 6, "Essai sur le Problème des Trois Corps"—Essai (PDF) பரணிடப்பட்டது 2016-05-06 at the வந்தவழி இயந்திரம்; source Tome 6 (Viewer)
- "Essay on the Three-Body Problem" by J-L Lagrange, translated from the above, in http://www.merlyn.demon.co.uk/essai-3c.htm பரணிடப்பட்டது 2019-06-23 at the வந்தவழி இயந்திரம்.
- Considerationes de motu corporum coelestium—லியோனார்டு ஆய்லர்—transcription and translation at http://www.merlyn.demon.co.uk/euler304.htm பரணிடப்பட்டது 2020-08-03 at the வந்தவழி இயந்திரம்.
- What are Lagrange points?—ஐரோப்பாan Space Agency page, with good animations
- Explanation of Lagrange points பரணிடப்பட்டது 2003-06-05 at the வந்தவழி இயந்திரம்—Prof. Neil J. Cornish
- A NASA explanation—also attributed to Neil J. Cornish
- Explanation of Lagrange points—Prof. John Baez
- Geometry and calculations of Lagrange points பரணிடப்பட்டது 2005-11-09 at Bibliotheca Alexandrina—Dr J R Stockton
- Locations of Lagrange points, with approximations—Dr. David Peter Stern
- An online calculator to compute the precise positions of the 5 Lagrange points for any 2-body system—Tony Dunn
- Astronomy cast—Ep. 76: Lagrange Points Fraser Cain and Dr. Pamela Gay
- The Five Points of Lagrange பரணிடப்பட்டது 2018-09-09 at the வந்தவழி இயந்திரம் by Neil deGrasse Tyson
- Earth, a lone Trojan discovered