Дуальні числа
Дуальні числа (комплексні числа параболічного типу) — гіперкомплексні числа виду , де — дійсні числа; — уявна одиниця, така що .
Множина всіх дуальних чисел утворює двовимірну комутативну асоціативну алгебру з одиницею над полем дійсних чисел . На відміну від поля комплексних чисел, ця алгебра містить дільники нуля, причому всі вони мають вигляд .
Дуальні числа — одна із двовимірних гіперкомплексних систем поряд з комплексними та подвійними числами.
Дуальні числа — це пари дійсних чисел виду , для яких визначені операції множення і додавання за правилами:
Числа виду ототожнюються при цьому з дійсними числами, а число позначається , після чого визначаючі тотожності приймають вигляд:
Дуальні числа можна представити як матриці з дійсних чисел, при цьому додаванню дуальних чисел відповідає додавання матриць, а множенню чисел — множення матриць. Покладемо . Тоді довільне дуальне число набуде вигляду
- .
Для експоненти з дуальним показником вірною є наступна рівність:
Дана формула дозволяє представити будь-який дуальне число в показниковій формі і знайти його логарифм по дійсній основі. Вона може бути доведена розкладанням експоненти в ряд Тейлора:
При цьому всі члени вище першого порядку дорівнюють нулю.
Корінь n-го ступеня з числа виду визначається як:
Дуальні числа дозволяють проводити автоматичне диференціювання функцій. Розглянемо для початку дійсний многочлен виду . Природно продовжити його область визначення з дійсних чисел на дуальні числа. Нескладно переконатися, що при цьому — похідна многочлена по . Після цього є природним продовжити область визначення всіх трансцендентних функцій на площину дуальних чисел за правилом , де — похідна функції . Таким чином, виконуючи обчислення не над дійсними, а над дуальним числами, можна автоматично отримувати значення похідної функції в точці. Особливо зручно розглядати таким чином композиції функцій.
Можна провести аналогію між дуальним числами і нестандартним аналізом. Уявна одиниця ε кільця дуальних чисел багато в чому подібна до нескінченно малого числа з нестандартного аналізу: будь-який степінь (вище першого) у точності дорівнює 0, у той час як будь-який степінь нескінченно малого числа приблизно дорівнює 0 (є нескінченно малою більш високого порядку). Значить, якщо — нескінченно мале число, то з точністю до гіпердійсні числа ізоморфні дуальним.
- Кантор И. Л., Солодовников А. С. Гиперкомплексные числа. — Москва : Наука, 1973. — 144 с.(рос.)
- Яглом И. М. Комплексные числа и их применение в геометрии. — Москва : Физматгиз, 1963. — 192 с.(рос.)