Тертя

Тертя
Зображення
Досліджується в трибологія
Розмірність
Формула
Позначення у формулі , і
Підтримується Вікіпроєктом Вікіпедія:Проєкт:Математика
CMNS: Тертя у Вікісховищі

Тертя́ — сукупність явищ, що спричиняють опір рухові одне відносно одного макроскопічних тіл (зовнішнє тертя) або елементів одного і того ж тіла (внутрішнє тертя), при якому механічна енергія розсіюється переважно у вигляді тепла. Зовнішнє тертя відбувається на границі контакту двох твердих тіл. Внутрішнє тертя виникає у потоках рідини або при деформації твердого тіла, між частинами, що переміщуються одна відносно одної.

Зовнішнє тертя (тертя) — явище опору відносному переміщенню, яке виникає між двома тілами в зонах контакту їх поверхонь, тангеціально до них. (ДСТУ 2823-94)

Види зовнішнього тертя

[ред. | ред. код]

При наявності відносного руху двох тіл, що контактують між собою, сили тертя, котрі виникають при цьому, можна поділити на:

  • Тертя руху — зовнішнє тертя двох тіл, що рухаються одне відносно одного[1], до якого відносяться:
    • Тертя ковзання — зовнішнє тертя руху, під час якого швидкості тіл в точках дотику відрізняються за величиною і (чи) напрямком[1] і діє на тіло у напрямку, протилежному до напрямку проковзування;
    • Тертя кочення — тертя руху, під час якого швидкості тіл однакові за величиною і напрямком, принаймні, в одній точці зони контакту[1] і виникає при коченні одного з двох контактуючих тіл одне відносно одного;
    • Тертя кочення з проковзуванням — тертя руху двох тіл з одночасним тертям кочення і ковзання в зоні контакту[1].
  • Тертя спокою — тертя між двома твердими тілами за відсутності їх руху одне відносно одного[1]. Це вид тертя виникає між двома тілами, котрі перебувають у взаємному контакті, і перешкоджає виникненню відносного руху. Його слід подолати для того, щоб привести у рух одне відносно одного два контактуючих тіла. Сила тертя спокою діє протилежно до напрямку ймовірного руху.

Фізична природа

[ред. | ред. код]

Фізична природа тертя до кінця не вивчена. Існують різні наукові школи, які трактують природу тертя з різних позицій, наприклад з точки зору фізики металів, електричної природи і т. д.

Сила тертя — неконсервативна сила, яка протидіє рухові фізичного тіла, розсіюючи його механічну енергію в тепло.

За ДСТУ 2823-94[1] сила тертя — сила, що чинить опір відносному переміщенню одного тіла по поверхні іншого під дією зовнішньої сили, і яка спрямована тангенціально до спільної границі між цими тілами.

За своєю фізичною природою сила тертя належить до електростатичних сил і не є фундаментальним типом взаємодії. В мікроскопічному світі сили тертя немає. Сила тертя виникає лише в макроскопічних системах, де внаслідок хаотичного руху атомів відбувається необоротний процес розсіяння енергії макроскопічного руху складових системи в енергію мікроскопічного руху атомів та молекул.

Сила тертя завжди направлена проти вектора швидкості.

Коли тіло рухається в газі чи рідині, сила тертя пропорційна швидкості, при великих швидкостях — квадрату швидкості.

Вивченням процесів тертя займається розділ фізики, який називається механікою фрикційного взаємодії, або трибологією.

Основною характеристикою тертя є коефіцієнт тертя , який визначається речовинами, з яких виготовлені поверхні взаємодіючих тіл.

У найпростіших випадках сила тертя та нормальне навантаження (або сила нормальної реакції) зв'язані нерівністю:

яка перетворюється у рівність тільки за наявності відносного руху. Це співвідношення називається законом Амонтона — Кулона.

Схема дії сил при терті ковзання: W — сила ваги, N — сила нормальної реакції опори, F — прикладена сила, що змушує тіло ковзати по поверхні, Ff — сила тертя ковзання.

Отже, як граничний випадок закону Амонтона-Кулона (див. вище), коли тіло пересувається на поверхні іншого тіла, сила тертя пропорційна силі реакції опори N з коефіцієнтом пропорційності μ, який називається коефіцієнтом тертя:

.

В техніці в залежності від умов змащування тертя ковзання поділяють на:

  • сухе, коли взаємодіючі тверді тіла не розділені жодними додатковими шарами змащення. В техніці зустрічається рідко. Характерна риса сухого тертя — наявність значної сили тертя спокою;
  • рідинне (в'язке), при взаємодії тіл, що розділені шаром твердого тіла (порошком графіту), рідини чи газу (мастильного матеріалу). Зустрічається в гідростатичних чи гідродинамічних опорах. Сила рідинного тертя залежить тільки від властивостей мастила та товщини його шару, а не від властивостей поверхні;
  • змішане, коли область контакту містить ділянки сухого і рідинного тертя;
  • граничне, коли в зоні контакту можуть міститися шари і ділянки різної природи (окисні плівки, рідина і т. д.) — найпоширеніший випадок при терті ковзання.

У зв'язку зі складністю перебігу фізико-хімічних процесів, в зоні фрикційної взаємодії, процеси тертя принципово не піддаються опису методами класичної механіки.

Тертя кочення — опір рухові, що виникає при перекочуванні тіла одне по одному. Проявляється, наприклад, між елементами підшипників кочення, між шиною колеса автомобіля і дорожнім полотном.

де:

  •  — сила тертя кочення;
  • f — коефіцієнт тертя кочення, одиниці вимірювання метр;
  • R — радіус тіла кочення;
  • N — притискна сила тіла до поверхні.

Максимальна сила тертя спокою прямо пропорційна до сили нормального тиску. Сила тертя спокою перешкоджає початкові руху тіла. З іншого боку, сила тертя спокою може спричинити прискорений рух тіла після початку руху.

Явище внутрішнього тертя у рідинах та газах називається в'язкістю.

Докладніше: В'язкість

Дисипація енергії

[ред. | ред. код]

При терті енергія макроскопічного механічного руху переходить в енергію мікроскопічного руху атомів та молекул. Людство навчилося використовувати цей ефект для добування вогню.

Електризація тертям

[ред. | ред. код]

При терті поверхні багатьох тіл заряджаються, що свідчить про електростатичну природу тертя. Цей процес використовується для створення статичних зарядів. Одним із найпоширеніших прикладів такої електризації тертям у сучасному світі є електризація барабана у фотокопіювальній машині. За допомогою електризації тертям можна створювати дуже великі напруги, як, наприклад, у електростатичному генераторі Ван де Граафа.

Змащення

[ред. | ред. код]

Розрізняють тертя без мастильного матеріалу (сухе тертя) і тертя з мастильним матеріалом, що підводиться у зону тертя. Для зменшення тертя використовуються різноманітні мастила та способи їх подавання в зону тертя. За умовами тертя в умовах змащення класифікують такі види[1]:

  • Газове (рідинне, тверде) — мащення, в умовах якого розділення поверхонь тертя тіл, що рухаються одне відносно одного, відбувається за рахунок газоподібного (рідкого, твердого) мастильного матеріалу. Його різновиди:
    • гідродинамічне (газодинамічне) мащення — рідинне (газове) мащення, в умовах якого повне розділення поверхонь тертя відбувається за рахунок тиску, що самочинно виникає в шарі рідини (газу) під час руху поверхонь одна відносно одної;
    • гідростатичне (газове) мащення, в умовах якого повне розділення поверхонь тертя тіл, що перебувають у стані відносного руху чи спокою, відбувається за допомогою рідини (газу), що подається під зовнішнім тиском між поверхнями тертя.
    • еласто-гідродинамічне мащення — мащення, в умовах якого характеристики тертя і товщина плівки рідкого мастильного матеріалу між двома поверхнями, що рухаються одна відносно одної, визначаються пружними властивостями матеріалів поверхонь тертя, а також реологічними властивостями мастильного матеріалу.
  • Граничне мащення — мащення, в умовах якого тертя та зношування поверхонь, що рухаються одна відносно одної, визначаються їх властивостями, а також тими властивостями мастильного матеріалу, які відрізняються від об'ємної в'язкості.
  • Змішане мащення — мащення, під час застосування якого відбувається частково гідродинамічне, а частково граничне мащення.

У зворотній задачі для збільшення тертя поверхні, які можуть ковзати одна відносно другої, роблять шорсткими. Цій меті служить також і форма підошов взуття.

Див. також

[ред. | ред. код]

Примітки

[ред. | ред. код]
  1. а б в г д е ж ДСТУ 2823-94 Зносостійкість виробів тертя, зношування та мащення. Терміни та визначення.

Література

[ред. | ред. код]
  • Вплив тертя на концентрацію напружень та міцність деталей машин: [монографія] / О. М. Римар. — Л. : Сполом, 2013. — 378, [2] с. : іл., табл. — Бібліогр.: с. 356—378 (248 назв). — ISBN 978-966-665-835-0
  • Закалов О. В. Основи тертя і зношування в машинах: Навчальний посібник / О. В. Закалов, І. О. Закалов. — Тернопіль: Видавництво ТНТУ ім. І.Пулюя, 2011. — 322 с.
  • Теорія механізмів і машин/ А. С. Кореняко; Під ред. М. К. Афанасьєва. — К. : Вища шк. Головне вид-во, 1987. — 206 с.
  • Чолпан П. П. Фізика. К.: Вища школа. 2003. — 507 с. - ISBN 966-642-112-7
  • Попов С.В., Бучинський М.Я., Гнітько С.М., Чернявський А.М. Теорія механізмів технологічних машин: підручник для студентів механічних спеціальностей закладів вищої освіти. Харків: НТМТ, 2019. 268 с.

Посилання

[ред. | ред. код]