2018 in paleoichthyology
| |||
---|---|---|---|
This list of fossil fish described in 2018 is a list of new taxa of jawless vertebrates, placoderms, acanthodians, fossil cartilaginous fish, bony fish, and other fish of every kind that are scheduled to be described during the year 2018, as well as other significant discoveries and events related to paleontology of fish that are scheduled to occur in 2018.
Research
[edit]- A study on the fossil fish occurrences and habitat during the middle Paleozoic (480 million to 360 million years ago) is published by Sallan et al. (2018), fish originated in restricted, shallow intertidal-subtidal environments.[2]
- A survey of Devonian fish fauna from Michigan is published by Stack & Sallan (2018).[3]
- A study on the ecological diversification of thelodonts is published by Ferrón et al. (2018).[4]
- The first occurrence of pelvic girdles and intromittent organs in Euphanerops longaevus, associated with a morphologically differentiated region of the axial skeleton, is reported by Chevrinais et al. (2018).[5]
- A study on the identity of the aspidin (a primitive bone-like tissue of heterostracans) is published by Keating et al. (2018), who interpret aspidin as an acellular dermal bone.[6]
- Redescription of Tesseraspis mosaica is published by Blieck, Elliott & Karatajūtė-Talimaa (2018).[7]
- A study on the morphological and taxonomic diversity of pteraspidiforms is published by Romano, Sansom & Randle (2018).[8]
- A study on the diversity of jaw shapes in modern and Paleozoic jawed fishes, evaluating whether the full extent of jaw morphological variation was established early in gnathostome evolutionary history, is published by Hill et al. (2018).[9]
- New specimens of Brindabellaspis stensioi, providing new information on the morphology of the rostral region of the skull, are described from the Lower Devonian of the New South Wales (Australia) by King, Young & Long (2018).[10]
- Redescription of the antiarch placoderm Asterolepis thule and a study on the age of the deposits preserving the fossils of this species is published by Newman & Den Blaauwen (2018).[11]
- Description of bony pelvic plates in 32 specimens of Bothriolepis canadensis from the Upper Devonian Escuminac Formation (Canada) is published by Charest, Johanson & Cloutier (2018), who reject the interpretation of these structures as genital plates (suggested by Long et al., 2015),[12] and identify them as the pelvic girdle instead.[13]
- Redescription of the antiarch placoderm Phymolepis cuifengshanensis and a study on the phylogenetic relationships of this species is published by Wang & Zhu (2018).[1]
- A study on the morphology of the skull, especially the braincase of the petalichthyid placoderm Shearsbyaspis oepiki is published by Castiello & Brazeau (2018).[14]
- Fossil interpreted as placoderm (arthrodiran) egg cases are described from the Devonian (Famennian) Cleveland Shale (Ohio, United States) by Carr & Jackson (2018).[15]
- Circular or near-circular patterned trace fossils, similar to underwater circles produced by male pufferfishes, are described from the Upper Devonian Hongguleleng Formation (China) by Zong & Gong (2018), who consider it possible that these fossils may be structures made by male fish to attract females.[16]
- Redescription of Gladbachus adentatus and a study on the phylogenetic relationships of the species is published by Coates et al. (2018).[17]
- A study on the wear of a tooth whorl of a specimen of Edestus heinrichi, as well as on its implications for inferring the function of the tooth whorls in this species, is published by Itano (2018).[18]
- New description of Edestus, providing new information on the anatomy of this taxon, is published online by Tapanila et al. (2018).[19]
- Two partial specimens of a callorhynchid chimaeroid left in open nomenclature are described from the Upper Kimmeridgian Nusplingen Plattenkalk (Germany) by Duffin (2018).[20]
- A study on the teeth histology and vasculature of the oldest known tooth-bearing sharks, Leonodus carlsi and Celtiberina maderi, is published by Martinez-Perez et al. (2018).[21]
- The first known basicranium of Carcharopsis wortheni is described from the Carboniferous Fayetteville Shale (United States) by Bronson, Mapes & Maisey (2018).[22]
- A study on the morphology of the braincase of Tristychius arcuatus is published by Coates & Tietjen (2018).[23]
- A diverse fauna of Early Triassic cartilaginous fishes is described from the Vikinghøgda Formation (Spitsbergen, Norway) by Bratvold, Delsett & Hurum (2018).[24]
- The first material referable to hybodont shark (a member of the genus Asteracanthus) is described from the Lower Jurassic (Toarcian) Rosso Ammonitico Formation (Italy) by Romano et al. (2018), providing new information on the dispersal of this genus in the Jurassic Tethys.[25]
- The first scroll coprolites from the Mesozoic reported so far, likely produced by euryhaline hybodontid sharks, are described from the Upper Triassic Tiki Formation of India by Rakshit et al. (2018), who name a new coprolite taxon Tikicopros triassicus.[26]
- Description of new remains of the Late Jurassic shark Palaeocarcharias stromeri and a study on the anatomy and phylogenetic relationships of this species is published by Landemaine, Thies & Waschkewitz (2018), who name a new order Palaeocarchariiformes and a new family Palaeocarchariidae.[27]
- Description of an articulated skeleton of a member of the palaeospinacid genus Synechodus from the Lower Cretaceous (Albian) Saint-Pô Formation (France), and a revision of the taxonomic history of the species assigned to the genus Synechodus, is published by Mollen & Hovestadt (2018).[28]
- Late Cretaceous taxon Platylithophycus cretaceus known from the Niobrara Chalk of Kansas (United States), considered to be a green alga or a cuttlefish in earlier publications, is reinterpreted as a member of Elasmobranchii by Bronson & Maisey (2018).[29]
- A study on the microstructure of enameloid in the isolated teeth of archaeobatid batomorphs Toarcibatis elongata, Cristabatis crescentiformis and Doliobatis weisi from the Jurassic (Toarcian) localities of Halanzy (Belgium) and Ginzebierg (Luxembourg) is published by Manzanares, Botella & Delsate (2018).[30]
- A study on the structure of teeth of Myledaphus pustulosus from the Upper Cretaceous (Maastrichtian) Hell Creek Formation (Montana, United States) is published by Hoffman, Jensen & Hageman (2018).[31]
- Isolated teeth of the sand shark Brachycarcharias lerichei are described from the Eocene (Ypresian) La Meseta Formation (Antarctica) by Marramà et al. (2018), representing the southernmost occurrence of the genus Brachycarcharias reported so far.[32]
- A study on the anatomy, paleobiology and paleoecology of the Eocene requiem shark Eogaleus bolcensis is published by Marramà, Carnevale & Kriwet (2018).[33]
- Teeth of members of the genera Galeorhinus and Physogaleus are described from the Lower Eocene sediments of the Khuiala Formation (Jaisalmer basin, India) by Pandey, Chaskar & Case (2018).[34]
- A study on the teeth mineralization process and teeth histology in extant and fossil members of the genus Hemipristis is published by Jambura et al. (2018).[35]
- A study on the global and regional morphological variation of the teeth of the ground sharks and mackerel sharks across the Cretaceous–Paleogene boundary is published by Bazzi et al. (2018).[36]
- A study on the anatomy and evolution of teeth of members of the families Megachasmidae and Cetorhinidae, based on data from recent and fossil teeth, is published by Mitchell, Ciampaglio & Jacquemin (2018).[37]
- A study on the physiological, ecological and life-history traits which influenced the biogeographic distributions of cartilaginous fishes from the Neogene to the present is published by Villafaña & Rivadeneira (2018).[38]
- A review of the present and past (Miocene–Pleistocene) shark and ray diversity in marine waters of Tropical America is published by Carrillo-Briceño et al. (2018).[39]
- A study on the phylogenetic relationships of extant and fossil squalomorph sharks as indicated by teeth morphology is published by Flammensbeck et al. (2018).[40]
- A study on the morphology and phylogenetic relationships of an early bony fish known from two partial skulls recovered from the Devonian (Emsian) Taemas Limestones of the Burrinjuck area (New South Wales, Australia), possibly belonging to the genus Ligulalepis (described on the basis of isolated scales), is published by Clement et al. (2018).[41]
- Redescription of Elonichthys germari is published by Schindler (2018), who presents the first reconstruction of the skull of this species.[42]
- Redescription of the neotype of the elonichthyid Rhabdolepis macropterus is published by Schindler (2018), who presents new reconstruction of the skull of this species.[43]
- A revision of ray-finned fishes from the Permian locality Buxières-les-Mines (Bourbon-l’Archambault Basin, France) is published by Štamberg (2018).[44]
- A study on the effect of Permian–Triassic and Triassic–Jurassic extinction events on ray-finned fishes is published by Smithwick & Stubbs (2018).[45]
- A study on the evolutionary history of ray-finned fishes across the Cretaceous–Paleogene extinction event, as indicated by isolated fossil teeth preserved in a South Pacific sediment core spanning 72–43 Ma, is published by Sibert et al. (2018).[46]
- A study on the morphological variation of the dorsal finlets in extant bichirs, testing the viability of these anatomic structures as a tool for taxonomic diagnoses in the study of fossil members of this group, is published by Coelho, Cupello & Brito (2018).[47]
- New data on the reproductive biology of the species Saurichthys curionii and Saurichthys macrocephalus from the Middle Triassic Meride Limestone (Monte San Giorgio, Switzerland) is presented by Maxwell et al. (2018), who identify six specimens as unambiguously gravid.[48]
- A study on the internal anatomy of the skulls of two Early Triassic specimens of Saurichthys, as well as on the phylogenetic relationships of saurichthyiforms, is published by Argyriou et al. (2018).[49]
- A comparative study on the bony labyrinth of early neopterygians, including relatives of gars and teleosts, is published by Giles, Rogers & Friedman (2018).[50]
- A study on the diversity of body shapes of neopterygians from the Triassic to the Early Cretaceous is published by Clarke & Friedman (2018).[51]
- Redescription and taxonomic reassessment of the pycnodontiform genus Cosmodus is published by Vullo et al. (2018).[52]
- A study on 52 specimens of Pycnodus from the Eocene Monte Bolca Lagerstätte (Italy), evaluating whether the morphological variability within the sample might be related to inter- or intraspecific variation, is published by Cawley et al. (2018).[53]
- A study on the anatomical structure and possible function of the flank bar-scales of members of Pycnodontiformes is published by Capasso (2018).[54]
- A revision of the phylogenetic relationships of the fossils fishes belonging to the group Halecomorphi is published by Ebert (2018).[55]
- A redescription of Asialepidotus shingyiensis and a study on the phylogenetic relationships of the species is published by Xu & Ma (2018).[56]
- A study on the phylogenetic relationships of the Triassic neopterygian Ticinolepis, as well as on the relationships of the fossil neopterygians in general, is published by López-Arbarello & Sferco (2018).[57]
- A study on the locomotion energetics of Leedsichthys problematicus, possible factors that drove the gigantism in pachycormiforms and the metabolic limits of body size in ray-finned fishes is published by Ferrón et al. (2018).[58]
- An ichthyodectiform fossil specimen preserving a small skull and anterior part of the trunk is described from a core recovered from a well drilled in the Cape Verde Basin, ca. 400 km offshore from the West African Atlantic Margin, by Casson et al. (2018).[59]
- A study on the evolutionary history of the family Catostomidae, based on data from molecules, morphology and fossil record, is published by Bagley, Mayden & Harris (2018).[60]
- A study on the phylogenetic relationships of members of Acanthomorpha and on the timescale of the radiation of this group is published by Alfaro et al. (2018), who report that crown ages for five of the six major percomorph subclades, and for the bulk of the species diversity in the sixth, coincide with the Cretaceous–Paleogene boundary.[61]
- A study on the morphology of the skeleton of Pholidophorus latiusculus, as well as on the phylogenetic relationships of this species, is published by Taverne (2018).[62]
- A study on the gill-arch anatomy in Late Cretaceous–early Paleogene members of Aulopiformes is published by Beckett, Giles & Friedman (2018).[63]
- A new specimen of Spinocaudichthys with preserved intestinal tract is described from the Cretaceous (Cenomanian) Jbel Oum Tkout Lagerstätte (Morocco) by Davesne et al. (2018).[64]
- A study on the bone histology of extant opahs, comparing it with bones of their extant and fossil relatives (including "Aipichthys" velifer), and testing the hypothesized link between endothermy and cellular bone (bone containing embedded osteocyte cells) in teleosts, is published by Davesne et al. (2018).[65]
- An articulated skeleton of a juvenile toadfish distinct from Louckaichthys novosadi is described from the Oligocene Bituminous Marls Formation (Romania) by Pikryl et al. (2018).[66]
- A study on the dynamics of diversification, phenotypic evolution and habitat transitions in the ray-finned fish group Carangaria after the Cretaceous–Paleogene extinction event is published by Ribeiro et al. (2018).[67]
- A study on the phylogenetic relationships of the fossil snake mackerels and cutlassfishes from the Eocene (Ypresian) London Clay Formation (United Kingdom) is published by Beckett et al. (2018).[68]
- Detailed description of the caudal skeleton of the Paleogene surgeonfish Arambourgthurus scombrurus is published by Carnevale & Tyler (2018).[69]
- A study on the morphology of the Oligocene percoid fish Oligoserranoides budensis is published by Bieńkowska-Wasiluk & Pałdyna (2018).[70]
- A study on the Pliocene fish fossils from the Kanapoi site (Kenya) and their implications for reconstructing lake and river environments in the Kanapoi Formation is published online by Stewart & Rufolo (2018).[71]
- A metacarpal bone of a specimen of Pteranodon, bearing teeth marks likely produced by a shark and by a saurodontid fish, is described from the Campanian Mooreville Chalk (Alabama, United States) by Ehret & Harrell (2018).[72]
- A series of neck vertebrae of Pteranodon associated with a tooth of the lamniform shark Cretoxyrhina mantelli is described from the Upper Cretaceous Niobrara Formation (Kansas, United States) by Hone, Witton & Habib (2018), who interpret the specimen as evidence of Cretoxyrhina biting Pteranodon.[73]
- A mawsoniid coelacanth specimen is described from Rhaetian deposits of the Var Department (France) by Deesri et al. (2018), representing the first known coelacanth from the marine Triassic of France.[74]
- A study on both newly collected and earlier fossil material of Ventalepis ketleriensis from the Devonian (Famennian) of Latvia and central and northwestern Russia is published by Lebedev & Lukševičs (2018), who interpret the fossils as supporting the porolepiform affinities of this species, and name a new family Ventalepididae.[75]
- Anatomical description of the endocast of "Chirodipterus" australis from the Upper Devonian Gogo Formation (Australia) is published by Henderson & Challands (2018).[76]
- A revision of the lungfish remains from the Triassic of the Świętokrzyskie Mountains and from the northeastern Poland is published by Skrzycki, Niedźwiedzki & Tałanda (2018), who report the first known Middle Triassic finding of Arganodus worldwide and the oldest known occurrence of Ptychoceratodus in Europe.[77]
- Lungfish burrows are reported for the first time from the Lower and Middle Triassic deposits of the Southern Cis-Urals by Sennikov (2018).[78]
- A study on the anatomy of the lungfish Mioceratodus gregoryi from the Eocene Redbank Plains Formation (Australia) is published by Kemp (2018).[79]
- Description of well-preserved pelvic fin skeleton of a specimen of Rhizodus hibberti from the Carboniferous (Viséan) Asbian Wardie Shales (United Kingdom) is published by Jeffery et al. (2018).[80]
- A rediagnosis and redescription of Hyneria lindae based on new remains from the Catskill Formation (Pennsylvania, United States) is published by Daeschler & Downs (2018).[81]
New taxa
[edit]Jawless vertebrates
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov | Valid | Liu, Gai & Zhu | Devonian (early Lochkovian) | A member of Galeaspida belonging to the group Polybranchiaspiformes and the family Polybranchiaspidae. The type species is A. huiqingae. | ||||
Gen. et comb. nov | Valid | Glinskiy | A member of the family Psammosteidae. The type species is "Tartuosteus" luhai Mark-Kurik (1965). | |||||
Gen. et sp. nov | Valid | Elliott, Lassiter & Blieck | Drake Bay | A member of the family Cyathaspididae. The type species is F. elgae. | ||||
Gen. et sp. nov | Valid | Tinn & Märss | An early osteostracan. Genus includes new species K. delectabilis. | |||||
Gen. et sp. nov | Valid | Gai et al. | A member of Galeaspida belonging to the group Polybranchiaspiformes and the family Gumuaspidae. The type species is N. zengi. | |||||
Sp. nov | Valid | Turner & Burrow | Eastport | A thelodont. | ||||
Gen. et sp. nov | Valid | Gai et al. | A member of Galeaspida belonging to the group Polybranchiaspiformes and the family Gumuaspidae. The type species is P. serratus. | |||||
Gen. et comb. nov | Valid | Gai et al. | Devonian (early Lochkovian) | A member of Galeaspida belonging to the group Polybranchiaspiformes and the family Gumuaspidae. The type species is "Laxaspis" rostrata Liu (1975). | ||||
Gen. et comb. nov | Valid | Glinskiy | A member of the family Psammosteidae. The type species is "Psammolepis" proia Mark-Kurik (1965). |
Placoderms
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov | Valid | Carr | A member of Aspinothoracidi. The type species is H. jacksoni. | |||||
Sp. nov | Valid | Mark-Kurik et al. | ||||||
Gen. et sp. nov | Valid | Pan et al. | A member of Antiarchi belonging to the family Bothriolepididae. The type species is W. magniforaminis. |
Acanthodians
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov | Valid | Pinakhina | Middle Devonian | |||||
Gen. et sp. nov | Valid | Voichyshyn & Szaniawski | Early Devonian | A member of Ischnacanthiformes belonging to the new family Podoliacanthidae. The type species is D. semirotunda. | ||||
Gen. et sp. et comb. nov | Valid | Pinakhina & Märss | A member of Acanthodiformes belonging to the family Cheiracanthidae. The type species is G. tenericostatus; genus also includes "Cheiracanthus" talimae Valiukevičius (1985). | |||||
Gen. et comb. nov | Valid | Burrow & Turner | A possible acanthodian of uncertain phylogenetic placement. The type species is "Diplacanthoides" robustus Brotzen (1934). | |||||
Gen. et sp. nov | Valid | Voichyshyn & Szaniawski | Early Devonian | A member of Ischnacanthiformes belonging to the new family Podoliacanthidae. The type species is K. serratus. | ||||
Sp. nov | Valid | Pinakhina & Märss | A member of Diplacanthiformes belonging to the family Diplacanthidae. |
Cartilaginous fishes
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov | Valid | Guinot & Carrillo-Briceño | Cretaceous (Albian and Cenomanian) | A mackerel shark of uncertain phylogenetic placement. Genus includes new species A. karsteni. | ||||
Sp. nov | Valid | Kent & Ward | Miocene | Malta | ||||
Sp. nov | Valid | Burrow & Turner | A member of Altholepidiformes belonging to the family Altholepididae. | |||||
Gen. et sp. nov | Valid | Fuchs et al. | A ground shark. Genus includes new species A. triquetrus. | |||||
Gen. et sp. nov | Valid | Hodnett & Elliott | A member of Neoselachii belonging to the family Anachronistidae. The type species is A. santuccii. | |||||
Gen. et sp. et comb. nov | Valid | Itano & Lambert | Carboniferous (late Tournaisian to Viséan) | A member of Holocephali belonging to the group Cochliodontiformes. The type species is A. multicuspidatus; genus also includes "Deltodopsis" bialveatus St. John & Worthen (1883). | ||||
Sp. nov | Valid | Reinecke et al. | A sand shark. | |||||
Gen. et sp. nov | Valid | Prokofiev & Sychevskaya | Early Oligocene | A relative of the basking shark. The type species is C. zherikhini. | ||||
Sp. nov | Valid | Hodnett & Elliott | A member of Neoselachii belonging to the family Anachronistidae. | |||||
Gen. et 2 sp. nov | Valid | Feichtinger et al. | A cartilaginous fish of uncertain affinities. Originally described as a possible member of the family Falcatidae; Ivanov (2022) considered its teeth to be only superficially similar to the teeth of Paleozoic falcatids, and considered it to be a possible neoselachian.[104] Genus includes new species C. ogiveformis and C. noricum. | |||||
Sp. nov | Valid | Ebersole & Ehret | Late Cretaceous (late Santonian and early Campanian) | |||||
Sp. nov | Valid | Richards et al. | A member of Cochliodontiformes belonging to the family Cochliodontidae. | |||||
Gen. et sp. nov | Valid | Fuchs et al. | A ground shark. Genus includes new species F. austriacus. | |||||
Gen. et sp. nov | Valid | Hodnett & Elliott | A member of Xenacanthiformes belonging to the family Diplodoselachidae. The type species is H. parva. | |||||
Sp. nov | Sun in Sun et al. | |||||||
Sp. nov | Sun in Sun et al. | |||||||
Sp. nov | Valid | Blanco | ||||||
Gen. et sp. nov | Valid | Ivanov in Ivanov et al. | A member of Hybodontiformes belonging to the superfamily Hybodontoidea. Genus includes new species L. triangulus. Announced in 2018; the final version of the article naming it was published in 2020. | |||||
Gen. et sp. nov | Valid | Engelbrecht et al. | A skate. The type species is M. leiostemma. | |||||
Gen. et sp. nov | Valid | Engelbrecht et al. | A skate. The type species is M. maleficapelli. | |||||
Gen. et comb. nov | Valid | Guinot & Carrillo-Briceño | A sand shark; a new genus for "Odontaspis" saskatchewanensis Case, Tokaryk & Baird (1990). | |||||
Gen. et sp. nov | Valid | Hodnett & Elliott | A member of Euselachii belonging to the family Protacrodontidae. The type species is M. carrieae. | |||||
Sp. nov | Valid | Bhat, Ray & Datta | A xenacanthid. | |||||
Gen. et sp. nov | Valid | Feichtinger et al. | A possible member of the family Ctenacanthidae. Genus includes new species N. trivortex. | |||||
Gen. et sp. nov | Valid | Hodnett & Elliott | A member of Euselachii belonging to the family Protacrodontidae. The type species is N. billingsleyi. | |||||
Gen. et sp. nov | Valid | Marramà, Schultz & Kriwet | A member of Rajiformes of uncertain phylogenetic placement. The type species is O. parva. | |||||
Gen. et comb. nov | Valid | Pollerspöck, Flammensbeck & Straube | A sleeper shark; a new genus for "Paraetmopterus" horvathi Underwood & Schlögl (2013). | |||||
Gen. et comb. nov | Valid | Hovestadt | Jurassic | A bullhead shark. Genus includes "Heterodontus" sarstedtensis Thies (1983). | ||||
Sp. nov | Valid | Adnet et al. | A cowtail stingray of Pastinachus. Announced in 2018; the final version of the article naming it was published in 2019. | |||||
Gen. et comb. nov | Valid | Bhat, Ray & Datta | A member of Hybodontiformes belonging to the family Lonchidiidae. Genus includes "Parvodus" tikiensis Prasad et al. (2008). | |||||
Gen. et comb. nov | Valid | Hovestadt | Jurassic | A bullhead shark. Genus includes "Acrodus" semirugosus Plieninger (1847), "Hemipristis" bidens Quenstedt (1852) and "Strophodus" semirugosus Quenstedt (1852). | ||||
Gen. et comb. nov | Valid | Hovestadt | Late Cretaceous | A bullhead shark. Genus includes "Heterodontus" boussioni Guinot et al. (2013). | ||||
Gen. et comb. nov | Valid | Marramà et al. | A whiptail stingray belonging to the subfamily Urogymninae. The type species is "Trygon" vorstmani de Beaufort (1926). | |||||
Sp. nov | Valid | Engelbrecht et al. | ||||||
Sp. nov | Valid | Engelbrecht et al. | ||||||
Gen. et sp. et comb. nov | Valid | Fuchs et al. | A carpet shark. Genus includes new species S. iniquus, as well as "Ornatoscyllium" rugasimulatum Guinot, Cappetta & Adnet (2014). | |||||
Sp. nov | Valid | Siversson et al. | ||||||
Sp. nov | Valid | Siversson et al. | ||||||
Sp. nov | Valid | Guinot & Carrillo-Briceño | ||||||
Sp. nov | Valid | Guinot & Carrillo-Briceño | ||||||
Sp. nov | Valid | Siversson et al. | ||||||
Sp. nov | Valid | Ginter | ||||||
Sp. nov | Valid | Ivanov in Ivanov & Plax | Devonian (Famennian) and Carboniferous (Tournaisian) | A member of Ctenacanthiformes belonging to the family Ctenacanthidae. | ||||
Gen. et sp. nov | Valid | Bhat, Ray & Datta | A xenacanthid. Genus includes new species T. asymmetricus. | |||||
Gen. et sp. nov | Valid | Bernárdez | A mackerel shark. Genus includes new species T. estauni. | |||||
Gen. et sp. nov | Valid | Richards et al. | A member of Cochliodontiformes of uncertain phylogenetic placement. The type species is W. longicalcus. |
Ray-finned fishes
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov | Valid | Schwarzhans, Huddleston & Takeuchi | Possibly a member of Stomiiformes belonging to the group Gonostomatoidei, of uncertain phylogenetic placement within the latter group. The type species is A. muscogeei. | |||||
Gen. et sp. nov | Valid | Yabumoto, Hirose & Brito | A member of Ichthyodectiformes. Genus includes new species A. goshouraensis. Announced in 2018; the final version of the article naming it was published in 2020. | |||||
Sp. nov | Valid | Smith, Martin & Carpenter | A species of Ameiurus. | |||||
Sp. nov | Valid | Aguilera & Marceniuk | Late Miocene | A species of Amphiarius. | ||||
Gen. et sp. nov | Valid | Sato et al. | A sturgeon. Genus includes new species A. acanthaspis. | |||||
Gen. et sp. nov | Valid | Elliott | A member of Actinopteri belonging to the family Haplolepidae. The type species is A. lochlani. | |||||
Sp. nov | Valid | Schwarzhans, Huddleston & Takeuchi | A member of Aulopiformes belonging to the family Ichthyotringidae. | |||||
Sp. nov | Valid | Reichenbacher, Filipescu & Miclea | Middle Miocene | |||||
Sp. nov | Valid | Schwarzhans | A member of Crossognathiformes belonging to the family Crossognathidae. | |||||
Gen. et comb. et sp. nov | Valid | Schwarzhans | A member of Osteoglossiformes of uncertain phylogenetic placement. The type species is "Otolithus (Leptolepidarum)" pentangulatus Frost (1924); genus also includes new species A. torrensi. | |||||
Sp. nov | Valid | Aguilera & Marceniuk | Late Miocene | A species of Ariopsis. | ||||
Sp. nov | Valid | Reichenbacher, Filipescu & Miclea | Middle Miocene | A species of Atherina. | ||||
Gen. et 2 sp. nov | Valid | Schwarzhans | A member of Elopiformes of uncertain phylogenetic placement. The type species is A. avitus; genus also includes A. heletzensis. | |||||
Gen. et sp. nov | Wilson, Pardo & Anderson | An early ray-finned fish. The type species is A. manskyi. | ||||||
Sp. nov | Valid | Aguilera & Marceniuk | Late Miocene | A species of Bagre. | ||||
Sp. nov | Valid | Nazarkin & Carnevale | Miocene (late Langhian–early Serravallian) | A species of Benthalbella. | ||||
Gen. et sp. nov | Valid | Schwarzhans | A teleost of uncertain phylogenetic placement. Genus includes new species B. cavatus. | |||||
Sp. nov | Valid | Elliott | A member of Actinopteri belonging to the family Haplolepidae. | |||||
Blennius? martinii[128] | Sp. nov | Valid | Reichenbacher, Filipescu & Miclea | Middle Miocene | ||||
Gen. et sp. nov | Valid | Mickle | Carboniferous (late Mississippian) | An early ray-finned fish. The type species is B. mercerensis. | ||||
Gen. et sp. nov | Valid | Elliott | A member of Actinopteri belonging to the family Haplolepidae. The type species is B. fenestratum. | |||||
Gen. et sp. nov | Valid | Ebert | A member of Halecomorphi belonging to the new order Ophiopsiformes. Genus includes new species C. koelblae. | |||||
Sp. nov | Valid | Bannikov | A species of Champsodon | |||||
Gen. et comb. nov | Valid | Bannikov, Schwarzhans & Carnevale | A member of the family Sciaenidae. The type species is "Sciaena" moguntiniformis Pana (1977). | |||||
Sp. nov | Junior homonym | Yabumoto & Nazarkin | A species of Clupea. The specific name is preoccupied by Clupea macrocephala Lacépède (1803); Yabumoto & Nazarkin (2020) coined a replacement name Clupea hanishinaensis.[136] | |||||
Sp. nov | Valid | Brzobohatý & Nolf | Middle Miocene | A species of Coryphaenoides. | ||||
Gen. et 2 sp. et comb. nov | Valid | Schwarzhans, Huddleston & Takeuchi | Late Cretaceous (Santonian to Maastrichtian) and Paleocene | A beardfish. The type species is C. alabamae; genus also includes new species C. amberi, as well as "genus Polymixiidarum" beaury Schwarzhans (2010), "genus Veliferidarum" groenlandicus Schwarzhans (2004) and "genus Veliferidarum" harderi Schwarzhans (2003). | ||||
Gen. et sp. nov | Valid | Wang et al. | A member of Palaeonisciformes. The type species is C. dongbeiensis. | |||||
Gen. et sp. nov | Valid | Bannikov, Schwarzhans & Carnevale | Middle Miocene | A member of the family Sciaenidae. The type species is C. krambergeri. | ||||
Gen. et sp. nov | Valid | Bannikov | Early Oligocene | A member of Stromateoidei of uncertain phylogenetic placement. Genus includes new species C. yanakuzminae. | ||||
Sp. nov | Valid | Maxwell & López-Arbarello | ||||||
Gen. et sp. nov | Valid | Schwarzhans | A member of Leptolepidiformes sensu lato of uncertain phylogenetic placement. Genus includes new species D. anguilliformis. | |||||
Sp. nov | Valid | Reichenbacher, Filipescu & Miclea | Middle Miocene | |||||
Sp. nov | Valid | Schwarzhans, Huddleston & Takeuchi | A species of Elops. | |||||
Gen. et sp. nov | Valid | Marramà & Carnevale | A member of the family Clupeidae. The type species is E. janvieri. | |||||
Gen. et sp. nov | Valid | Marramà et al. | A member of Clupeomorpha belonging to the group Ellimmichthyiformes and the family Paraclupeidae. The type species is E. superstes. | |||||
Gen. et 2 sp. et comb. nov | Valid | Schwarzhans, Huddleston & Takeuchi | United States | A member of Beryciformes belonging to the group Berycoidei, of uncertain phylogenetic placement within the latter group. The type species is E. stringeri; genus also includes new species E. compressus, as well as “genus Apogonidarum” maastrichtiensis Nolf & Stringer (1996) and “genus Apogonidarum” zideki Nolf & Stringer (1996). | ||||
Gen. et sp. nov | Valid | Taverne & Capasso | A member of the family Ichthyodectidae. The type species is F. bonarellii. | |||||
Gen. et sp. nov | Valid | Xu, Ma & Ren | An early member of Ginglymodi. The type species is F. wangi. | |||||
Sp. nov | Valid | Schwarzhans, Huddleston & Takeuchi | Possibly a member of Stomiiformes. | |||||
Sp. nov | Valid | Reichenbacher, Filipescu & Miclea | Middle Miocene | A species of Gobius. | ||||
Sp. nov | Valid | Reichenbacher, Filipescu & Miclea | Middle Miocene | A species of Gobius. | ||||
Sp. nov | Valid | Reichenbacher, Filipescu & Miclea | Middle Miocene | A species of Gobius. | ||||
Gen. et sp. nov | Valid | Konwert & Hörnig | A member of Pholidophoriformes. Genus includes new species G. ansorgei. | |||||
Gen. et sp. nov | Valid | Schwarzhans | A non-teleost bony fish of uncertain phylogenetic placement. Genus includes new species G. problematicus. | |||||
Gen. et sp. nov | Valid | Taverne & Capasso | A member of the family Pycnodontidae. The type species is H. picteti. | |||||
Sp. nov | Valid | Brzobohatý & Nolf | Middle Miocene | A species of Ijimaia. | ||||
Gen. et sp. nov | Valid | Taverne & Capasso | Pietraroja | A bonefish. The type species is I. pietrarojae. | ||||
Sp. nov | Valid | Murray et al. | A member of Osteoglossomorpha of uncertain phylogenetic placement. | |||||
Gen. et sp. nov | Valid | Přikryl & Carnevale | A viviparous brotula belonging to the subfamily Brosmophycinae. The type species is K. krumvirensis. | |||||
Sp. nov | Valid | Aguilera et al. | A species of Lagocephalus. | |||||
Gen. et sp. nov | Valid | Elliott | A member of Actinopteri of uncertain phylogenetic placement. The type species is L. gardineri. | |||||
Gen. et sp. et comb. nov | Valid | Bannikov, Schwarzhans & Carnevale | Miocene (late Burdigalian or early Langhian) | A member of the family Sciaenidae. The type species is L. popovi; genus also includes "Atractoscion" elongatissimus Schwarzhans (1993). | ||||
Gen. et sp. nov | Valid | Cavin et al. | A gar. Genus includes new species L. alticephalus. | |||||
Sp. nov | Valid | Gibson | A member of Redfieldiiformes. | |||||
Gen. et comb. nov | Valid | Schwarzhans | A member of Elopiformes of uncertain phylogenetic placement. The type species is Otolithus (Lycopteridarum) rhenanus Weiler (1954); genus also includes Otolithus (Lycopteridarum) acutus Weiler (1954). | |||||
Gen. et comb. et sp. nov | Valid | Bannikov, Schwarzhans & Carnevale | A member of the family Sciaenidae. The type species is "Genyonemus" karagiensis Bratishko, Schwarzhans & Reichenbacher (2015); genus also includes "Otolithus (Mugilidarum)" azerbaidjanicus Djafarova (2006), as well as new species L. caputoi. | |||||
Sp. nov | Valid | Nazarkin | Middle–Late Miocene | A species of Leuroglossus | ||||
Gen. et sp. nov | Valid | Taverne & Capasso | A member of the family Pycnodontidae. The type species is L. wenzi. | |||||
Gen. et sp. nov | Valid | Murray et al. | A member of Osteoglossiformes. The type species is L. colwellae. | |||||
Gen. et sp. nov | Valid | Beckett et al. | A relative of snake mackerels and cutlassfishes. Genus includes new species M. casieri. | |||||
Gen. et sp. nov | Valid | Arratia, González-Rodríguez & Hernández-Guerrero | A member of Crossognathiformes belonging to the family Pachyrhizodontidae. The type species is M. sergioi. | |||||
Sp. nov | Valid | Smith, Martin & Carpenter | A relative of the peamouth. | |||||
Gen. et sp. nov. | Valid | Taverne & Capasso | A member of Gonorynchiformes belonging to the group Gonorynchoidei. The type species is N. sanctibernardini. | |||||
Sp. nov | Valid | Miyata, Yabumoto & Hirano | Middle Pleistocene | A species of Nipponocypris. | ||||
Sp. nov | Valid | Schwarzhans | A member of Albuliformes of uncertain phylogenetic placement. | |||||
Sp. nov | Valid | Schwarzhans | A member of Albuliformes of uncertain phylogenetic placement. | |||||
Gen. et sp. nov | Valid | Yang et al. | A member of the family Cyprinidae related to members of the genus Schizothorax. Genus includes new species P. qaidamensis. | |||||
Gen. et sp. nov | Valid | Cantalice, Alvarado-Ortega & Alaniz-Galvan | A member of the family Serranidae. Genus includes new species P. lakamhae. | |||||
Sp. nov | Valid | Elliott | A member of Actinopteri belonging to the family Haplolepidae. | |||||
Sp. nov | Valid | Xu, Ma & Zhao | ||||||
Gen. et sp. nov | Valid | Choo et al. | Late Devonian | An early ray-finned fish. Genus includes new species P. acanthophorus. | ||||
Gen. et sp. nov | Valid | Kölbl-Ebert et al. | Late Jurassic (late Kimmeridgian to early Tithonian) | A member of Pycnodontiformes of uncertain phylogenetic placement. The type species is P. pinnatomus. | ||||
Gen. et comb. nov | Valid | Bannikov, Schwarzhans & Carnevale | Crimean Peninsula Azerbaijan? | A member of the family Sciaenidae. The type species is "Serranus" acuterostratus Rückert-Ülkümen (1996); genus might also include "Otolithus (Percidarum)" sigmoilinoides Pobedina (1956). | ||||
Sp. nov | Valid | Schwarzhans | A member of Albuliformes of uncertain phylogenetic placement. | |||||
Sp. nov | Valid | Khalloufi et al. | A relative of tarpons. | |||||
Gen. et comb. nov | Valid | Schwarzhans | A member of the family Elopidae. The type species is "Otolithus (Leptolepidarum)" cuneiformis Frost (1924); genus also includes "Leptolepis" tenuirostris Stinton (1968) and "genus Protacanthopterygiorum" scalpellum Nolf (2004). | |||||
Sp. nov | Valid | Stringer & Bell | Early Pliocene | A member of the family Sciaenidae. | ||||
Sp. nov | Valid | Elliott | A member of Actinopteri belonging to the family Gonatodidae. | |||||
Gen. et sp. nov | Valid | Elliott | A member of Actinopteri of uncertain phylogenetic placement. The type species is P. argentatum. | |||||
Gen. et sp. nov | Valid | Schwarzhans, Huddleston & Takeuchi | A member of Aulopiformes of uncertain phylogenetic placement. The type species is P. sagax. | |||||
Sp. nov | Valid | Stringer et al. | Late Cretaceous (early Campanian) | A relative of the Japanese gissu. | ||||
Gen. et comb. nov | Valid | Paiva & Gallo | A member of Semionotiformes. The type species is "Lepidotus" piauhyensis Roxo & Löfgren (1936) | |||||
Sp. nov | Valid | Elliott | A member of Actinopteri belonging to the family Rhadinichthyidae. | |||||
Sp. nov | Valid | Elliott | A member of Actinopteri belonging to the family Rhadinichthyidae. | |||||
Sp. nov | Valid | Elliott | A member of Actinopteri belonging to the family Rhadinichthyidae. | |||||
Gen. et sp. nov | Valid | Bogan et al. | Late Miocene | A member of the family Anablepidae. Genus includes new species S. calingasta. | ||||
Sp. nov | Valid | Wu, Sun & Fang | ||||||
Sp. nov | Valid | Aguilera & Marceniuk | Late Miocene | A species of Sciades. | ||||
Sp. nov | Valid | Aguilera & Marceniuk | Late Miocene | A species of Sciades. | ||||
Gen. et sp. nov | Valid | Latimer & Giles | A relative of Dapedium. Genus includes new species S. saxciput. | |||||
Gen. et sp. nov | Valid | Taverne & Capasso | A member of the family Pycnodontidae. The type species is S. giganteus. | |||||
Sp. nov | Valid | Schwarzhans | A member of Leptolepidiformes sensu lato of uncertain phylogenetic placement. | |||||
Sp. nov | Valid | Cantalice, Alvarado-Ortega & Brito | A member of Aspidorhynchiformes belonging to the family Aspidorhynchidae. | |||||
Gen. et sp. nov | Valid | Schwarzhans, Huddleston & Takeuchi | A teleost of uncertain phylogenetic placement. The type species is V. thlotlo. | |||||
Gen. et sp. nov | Valid | Carnevale & Bannikov | A member of the family Veliferidae. Genus includes new species W. angeloi. | |||||
Gen. et comb. nov | Valid | Schwarzhans | Early Jurassic to Early Cretaceous (Sinemurian to Berriasian) | A member of the family Leptolepididae sensu lato. The type species is Otolithus (incertae sedis) withersi Frost (1926); genus also includes Otolithus (Salmonoidei) oncorhynchoides Weiler (1954). | ||||
Gen. et sp. nov | Valid | Bogan, Agnolin & Scanferla | A member of the family Andinichthyidae. The type species is Y. eocenicus. | |||||
Sp. nov | Valid | Nam & Nazarkin | A relative of the prowfish. | |||||
Gen. et 2 sp. nov | Valid | Giordano et al. | A relative of Pleuropholis. Genus includes new species Z. quijadensis and Z. decollavi. |
Lobe-finned fishes
[edit]Name | Novelty | Status | Authors | Age | Unit | Location | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov | Valid | Clack et al. | A lungfish related to Ctenodus. Genus includes new species is C. ahlbergi. | |||||
Sp. nov | Valid | Agnolin et al. | A lungfish. | |||||
Sp. nov | Valid | Downs et al. | ||||||
Sp. nov | Valid | Brito et al. | A coelacanth. | |||||
Sp. nov | Valid | Bhat & Ray | A lungfish. Announced in 2018; the final version of the article naming it was published in 2020. |
References
[edit]- ^ a b Yajing Wang; Min Zhu (2018). "Redescription of Phymolepis cuifengshanensis (Antiarcha: Yunnanolepididae) using high-resolution computed tomography and new insights into anatomical details of the endocranium in antiarchs". PeerJ. 6: e4808. doi:10.7717/peerj.4808. PMC 5978403. PMID 29868260.
- ^ Lauren Sallan; Matt Friedman; Robert S. Sansom; Charlotte M. Bird; Ivan J. Sansom (2018). "The nearshore cradle of early vertebrate diversification". Science. 362 (6413): 460–464. Bibcode:2018Sci...362..460S. doi:10.1126/science.aar3689. PMID 30361374. S2CID 53089922.
- ^ Jack Stack; Lauren Sallan (2018). "An examination of the Devonian fishes of Michigan". PeerJ. 6: e5636. doi:10.7717/peerj.5636. PMC 6151260. PMID 30258725.
- ^ Humberto G. Ferrón; Carlos Martínez-Pérez; Susan Turner; Esther Manzanares; Héctor Botella (2018). "Patterns of ecological diversification in thelodonts". Palaeontology. 61 (2): 303–315. Bibcode:2018Palgy..61..303F. doi:10.1111/pala.12347. hdl:10550/85568. S2CID 134193011.
- ^ Marion Chevrinais; Zerina Johanson; Kate Trinajstic; John Long; Catherine Morel; Claude B. Renaud; Richard Cloutier (2018). "Evolution of vertebrate postcranial complexity: axial skeleton regionalization and paired appendages in a Devonian jawless fish". Palaeontology. 61 (6): 949–961. Bibcode:2018Palgy..61..949C. doi:10.1111/pala.12379. S2CID 135291962.
- ^ Joseph N. Keating; Chloe L. Marquart; Federica Marone; Philip C. J. Donoghue (2018). "The nature of aspidin and the evolutionary origin of bone". Nature Ecology & Evolution. 2 (9): 1501–1506. Bibcode:2018NatEE...2.1501K. doi:10.1038/s41559-018-0624-1. PMC 6109381. PMID 30065354.
- ^ Alain Blieck; David K. Elliott; Valentina N. Karatajūtė-Talimaa (2018). "A redescription of Tesseraspis mosaica Karatajūtė- Talimaa, 1983 (Vertebrata: †Pteraspidomorphi: Heterostraci) from the Lochkovian (Lower Devonian) of Severnaya Zemlya, Russia, with a review of tessellated heterostracan taxa". Acta Geologica Polonica. 68 (3): 275–306. doi:10.1515/agp-2018-0024 (inactive 1 November 2024).
{{cite journal}}
: CS1 maint: DOI inactive as of November 2024 (link) - ^ Marco Romano; Robert Sansom; Emma Randle (2018). "Morphospace saturation in the stem-gnathostomes pteraspidiformes heterostracans: an early radiation of a 'bottom' heavy clade". PeerJ. 6: e5249. doi:10.7717/peerj.5249. PMC 6055588. PMID 30042894.
- ^ Jennifer J. Hill; Mark N. Puttick; Thomas L. Stubbs; Emily J. Rayfield; Philip C. J. Donoghue (2018). "Evolution of jaw disparity in fishes". Palaeontology. 61 (6): 847–854. Bibcode:2018Palgy..61..847H. doi:10.1111/pala.12371. hdl:1983/2a8b1fc8-2aba-4c3e-b5be-eea579e3b662.
- ^ Benedict King; Gavin C. Young; John A. Long (2018). "New information on Brindabellaspis stensioi Young, 1980, highlights morphological disparity in Early Devonian placoderms". Royal Society Open Science. 5 (6): 180094. Bibcode:2018RSOS....580094K. doi:10.1098/rsos.180094. PMC 6030278. PMID 30110452.
- ^ Michael J. Newman; Jan L. Den Blaauwen (2018). "A redescription of the endemic antiarch placoderm Asterolepis thule from the Middle Devonian (Givetian) of Shetland and its biostratigraphical horizon". Scottish Journal of Geology. 54 (2): 69–75. Bibcode:2018ScJG...54...69N. doi:10.1144/sjg2018-005. S2CID 134584732.
- ^ John A. Long; Elga Mark-Kurik; Zerina Johanson; Michael S. Y. Lee; Gavin C. Young; Zhu Min; Per E. Ahlberg; Michael Newman; Roger Jones; Jan den Blaauwen; Brian Choo; Kate Trinajstic (2018). "Copulation in antiarch placoderms and the origin of gnathostome internal fertilization". Nature. 517 (7533): 196–199. doi:10.1038/nature13825. hdl:2328/35425. PMID 25327249. S2CID 205240898.
- ^ France Charest; Zerina Johanson; Richard Cloutier (2018). "Loss in the making: absence of pelvic fins and presence of paedomorphic pelvic girdles in a Late Devonian antiarch placoderm (jawed stem-gnathostome)". Biology Letters. 14 (6): 20180199. doi:10.1098/rsbl.2018.0199. PMC 6030608. PMID 29899132.
- ^ Marco Castiello; Martin D. Brazeau (2018). "Neurocranial anatomy of the petalichthyid placoderm Shearsbyaspis oepiki Young revealed by X-ray computed microtomography". Palaeontology. 61 (3): 369–389. Bibcode:2018Palgy..61..369C. doi:10.1111/pala.12345. PMC 5993267. PMID 29937580.
- ^ Robert K. Carr; Gary Jackson (2018). "A preliminary note of egg-case oviparity in a Devonian placoderm fish". Acta Geologica Polonica. 68 (3): 381–389. doi:10.1515/agp-2018-0020 (inactive 1 November 2024).
{{cite journal}}
: CS1 maint: DOI inactive as of November 2024 (link) - ^ Ruiwen Zong; Yiming Gong (2018). "Possible courtship behaviour of Devonian fish: Evidence from large radial trace fossils in northwestern China". Palaeogeography, Palaeoclimatology, Palaeoecology. 505: 180–186. Bibcode:2018PPP...505..180Z. doi:10.1016/j.palaeo.2018.05.042. S2CID 135104929.
- ^ Michael I. Coates; John A. Finarelli; Ivan J. Sansom; Plamen S. Andreev; Katharine E. Criswell; Kristen Tietjen; Mark L. Rivers; Patrick J. La Riviere (2018). "An early chondrichthyan and the evolutionary assembly of a shark body plan". Proceedings of the Royal Society B: Biological Sciences. 285 (1870): 20172418. doi:10.1098/rspb.2017.2418. PMC 5784200. PMID 29298937.
- ^ Wayne M. Itano (2018). "A tooth whorl of Edestus heinrichi (Chondrichthyes, Eugeneodontiformes) displaying progressive macrowear". Transactions of the Kansas Academy of Science. 121 (1–2): 125–133. doi:10.1660/062.121.0214. S2CID 90764139.
- ^ Leif Tapanila; Jesse Pruitt; Cheryl D. Wilga; Alan Pradel (2018). "Saws, scissors and sharks: Late Paleozoic experimentation with symphyseal dentition". The Anatomical Record. 303 (2): 363–376. doi:10.1002/ar.24046. PMID 30536888. S2CID 54478736.
- ^ Christopher J. Duffin (2018). "A callorhynchid chimaeroid (Pisces, Holocephali) from the Nusplingen Plattenkalk (Late Jurassic, SW Germany)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 289 (2): 161–175. doi:10.1127/njgpa/2018/0756. S2CID 134583173.
- ^ Carlos Martinez-Perez; Alba Martin-Lazaro; Humberto G. Ferron; Martina Kirstein; Philip C.J. Donoghue; Hector Botella (2018). "Vascular structure of the earliest shark teeth". Acta Geologica Polonica. 68 (3): 457–465. doi:10.1515/agp-2018-0017 (inactive 1 November 2024).
{{cite journal}}
: CS1 maint: DOI inactive as of November 2024 (link) - ^ Allison W. Bronson; Royal H. Mapes; John G. Maisey (2018). "Chondrocranial morphology of Carcharopsis wortheni (Chondrichthyes, Euselachii incertae sedis) based on new material from the Fayetteville Shale (upper Mississippian, middle Chesterian)". Papers in Palaeontology. 4 (3): 349–362. Bibcode:2018PPal....4..349B. doi:10.1002/spp2.1110. S2CID 134975540.
- ^ Michael I. Coates; Kristen Tietjen (2018). "The neurocranium of the Lower Carboniferous shark Tristychius arcuatus (Agassiz, 1837)". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 108 (1): 19–35. doi:10.1017/S1755691018000130. S2CID 135297534.
- ^ Janne Bratvold; Lene Liebe Delsett; Jørn H. Hurum (2018). "Chondrichthyans from the Grippia bonebed (Early Triassic) of Marmierfjellet, Spitsbergen". Norwegian Journal of Geology. 98 (2): 189–217. doi:10.17850/njg98-2-03. hdl:10852/71103.
- ^ Marco Romano; Paolo Citton; Aangelo Cipriani; Simone Fabbi (2018). "First report of hybodont shark from the Toarcian Rosso Ammonitico Formation of Umbria-Marche Apennine (Polino area, Terni, Central Italy)". Italian Journal of Geosciences. 137 (1): 151–159. doi:10.3301/IJG.2018.01. hdl:11336/97916.
- ^ Nibedita Rakshit; Mohd Shafi Bhat; Debarati Mukherjee; Sanghamitra Ray (2018). "First record of Mesozoic scroll coprolites: classification, characteristics, elemental composition and probable producers". Palaeontology. 62 (3): 451–471. doi:10.1111/pala.12409. S2CID 133986672.
- ^ Olivier Landemaine; Detlev Thies; Jens Waschkewitz (2018). "The Late Jurassic shark Palaeocarcharias (Elasmobranchii, Selachimorpha) – functional morphology of teeth, dermal cephalic lobes and phylogenetic position". Palaeontographica Abteilung A. 312 (5–6): 103–165. Bibcode:2018PalAA.312..103L. doi:10.1127/0375-0442/2018/0000/0085. S2CID 146540287.
- ^ Frederik H. Mollen; Dirk C. Hovestadt (2018). "A new partial skeleton of a palaeospinacid shark (Neoselachii, Synechodontiformes) from the Albian of northern France, with a review of the taxonomic history of Early Cretaceous species of Synechodus Woodward, 1888". Geodiversitas. 40 (25): 557–574. doi:10.5252/geodiversitas2018v40a25. S2CID 133688090.
- ^ Allison W. Bronson; John G. Maisey (2018). "Resolving the identity of Platylithophycus, an enigmatic fossil from the Niobrara Chalk (Upper Cretaceous, Coniacian–Campanian)". Journal of Paleontology. 92 (4): 743–750. Bibcode:2018JPal...92..743B. doi:10.1017/jpa.2018.14. S2CID 135179588.
- ^ E. Manzanares; H. Botella; D. Delsate (2018). "On the enameloid microstructure of Archaeobatidae (Neoselachii, Chondrichthyes)". Journal of Iberian Geology. 44 (1): 67–74. Bibcode:2018JIbG...44...67M. doi:10.1007/s41513-018-0049-3. S2CID 135288092.
- ^ Brian L. Hoffman; Jeffrey S. Jensen; Scott A. Hageman (2018). "Dental structure of the Late Cretaceous (Maastrichtian) guitarfish (Neoselachii: Batoidea) Myledaphus pustulosus from the Hell Creek Formation of Garfield County, Montana". Transactions of the Kansas Academy of Science. 121 (3–4): 279–296. doi:10.1660/062.121.0412. S2CID 92493020.
- ^ Giuseppe Marramà; Andrea Engelbrecht; Thomas Mörs; Marcelo A. Reguero; Jürgen Kriwet (2018). "The southernmost occurrence of Brachycarcharias (Lamniformes, Odontaspididae) from the Eocene of Antarctica provides new information about the paleobiogeography and paleobiology of Paleogene sand tiger sharks". Rivista Italiana di Paleontologia e Stratigrafia. 124 (2): 283–298. doi:10.13130/2039-4942/9985.
- ^ Giuseppe Marramà; Giorgio Carnevale; Jürgen Kriwet (2018). "New observations on the anatomy and paleobiology of the Eocene requiem shark †Eogaleus bolcensis (Carcharhiniformes, Carcharhinidae) from Bolca Lagerstätte, Italy". Comptes Rendus Palevol. 17 (7): 443–459. Bibcode:2018CRPal..17..443M. doi:10.1016/j.crpv.2018.04.005.
- ^ Dhirendra K. Pandey; Ketan Chaskar; Gerard R. Case (2018). "Two fossil shark teeth from Lower Eocene shales of the Khuiala Formation, Jaisalmer Basin, India". Journal of the Palaeontological Society of India. 63 (2): 155–161. doi:10.1177/0971102320180202.
- ^ Patrick L. Jambura; Cathrin Pfaff; Charlie J. Underwood; David J. Ward; Jürgen Kriwet (2018). "Tooth mineralization and histology patterns in extinct and extant snaggletooth sharks, Hemipristis (Carcharhiniformes, Hemigaleidae)—Evolutionary significance or ecological adaptation?". PLOS ONE. 13 (8): e0200951. Bibcode:2018PLoSO..1300951J. doi:10.1371/journal.pone.0200951. PMC 6082511. PMID 30089138.
- ^ Mohamad Bazzi; Benjamin P. Kear; Henning Blom; Per E. Ahlberg; Nicolás E. Campione (2018). "Static dental disparity and morphological turnover in sharks across the end-Cretaceous mass extinction". Current Biology. 28 (16): 2607–2615.e3. Bibcode:2018CBio...28E2607B. doi:10.1016/j.cub.2018.05.093. PMID 30078565. S2CID 51893337.
- ^ Michaela G. Mitchell; Charles N. Ciampaglio; Stephen J. Jacquemin (2018). "Convergent evolution in tooth morphology of filter-feeding lamniform sharks". Southeastern Geology. 53 (2): 63–80.
- ^ Jaime from the AURTHOR OF JAMIE FOXX WE GOT THE ALCEERTthe Neogene to the present (2018). "The modulating role of traits on the biogeographic dynamics of chondrichthyans from the Neogene to the present". Paleobiology. 44 (2): 251–262. Bibcode:2018Pbio...44..251V. doi:10.1017/pab.2018.7. hdl:10533/232139. S2CID 90234863.
- ^ Jorge Domingo Carrillo-Briceño; Juan D. Carrillo; Orangel Antonio Aguilera; Marcelo R. Sanchez-Villagra (2018). "Shark and ray diversity in the Tropical America (Neotropics)—an examination of environmental and historical factors affecting diversity". PeerJ. 6: e5313. doi:10.7717/peerj.5313. PMC 6055692. PMID 30042900.
- ^ Christina K. Flammensbeck; Jürgen Pollerspöck; Frederic D. B. Schedel; Nicholas J. Matzke; Nicolas Straube (2018). "Of teeth and trees: A fossil tip-dating approach to infer divergence times of extinct and extant squaliform sharks". Zoologica Scripta. 47 (5): 539–557. doi:10.1111/zsc.12299. S2CID 92485821.
- ^ Alice M. Clement; Benedict King; Sam Giles; Brian Choo; Per E. Ahlberg; Gavin C. Young; John A. Long (2018). "Neurocranial anatomy of an enigmatic Early Devonian fish sheds light on early osteichthyan evolution". eLife. 7: e34349. doi:10.7554/eLife.34349. PMC 5973833. PMID 29807569.
- ^ Thomas Schindler (2018). "Neubeschreibung und erste Rekonstruktion von Elonichthys germari Giebel, 1848 (Pisces, Actinopterygii; Oberkarbon, Mitteldeutschland)". Hallesches Jahrbuch für Geowissenschaften. 41: 1–33.
- ^ Thomas Schindler (2018). "Revision of Rhabdolepis macropterus (Bronn, 1829) (Osteichthyes, lower Actinopterygii; Lower Permian, SW Germany)". PalZ. 92 (4): 651–660. Bibcode:2018PalZ...92..651S. doi:10.1007/s12542-018-0410-z. S2CID 134215274.
- ^ Stanislav Štamberg (2018). "Actinopterygians of the Permian locality Buxières-les-Mines (Bourbon-l'Archambault Basin, France) and their relationship to other early actinopterygians" (PDF). Fossil Imprint. 74 (3–4): 245–291. doi:10.2478/if-2018-0017. S2CID 133993804.
- ^ Fiann M. Smithwick; Thomas L. Stubbs (2018). "Phanerozoic survivors: Actinopterygian evolution through the Permo-Triassic and Triassic-Jurassic mass extinction events". Evolution. 72 (2): 348–362. doi:10.1111/evo.13421. PMC 5817399. PMID 29315531.
- ^ Elizabeth Sibert; Matt Friedman; Pincelli Hull; Gene Hunt; Richard Norris (2018). "Two pulses of morphological diversification in Pacific pelagic fishes following the Cretaceous–Palaeogene mass extinction". Proceedings of the Royal Society B: Biological Sciences. 285 (1888): 20181194. doi:10.1098/rspb.2018.1194. PMC 6191689. PMID 30305432.
- ^ Marcos Vinícius Coelho; Camila Cupello; Paulo M. Brito (2018). "Morphological variations in the dorsal fin finlets of extant polypterids raise questions about their taxonomical validity". PeerJ. 6: e5083. doi:10.7717/peerj.5083. PMC 6056263. PMID 30042877.
- ^ Erin E. Maxwell; Thodoris Argyriou; Rudolf Stockar; Heinz Furrer (2018). "Re-evaluation of the ontogeny and reproductive biology of the Triassic fish Saurichthys (Actinopterygii, Saurichthyidae)". Palaeontology. 61 (4): 559–574. Bibcode:2018Palgy..61..559M. doi:10.1111/pala.12355. S2CID 135337591.
- ^ Thodoris Argyriou; Sam Giles; Matt Friedman; Carlo Romano; Ilja Kogan; Marcelo R. Sánchez-Villagra (2018). "Internal cranial anatomy of Early Triassic species of †Saurichthys (Actinopterygii: †Saurichthyiformes): implications for the phylogenetic placement of †saurichthyiforms". BMC Evolutionary Biology. 18 (1): 161. Bibcode:2018BMCEE..18..161A. doi:10.1186/s12862-018-1264-4. PMC 6211452. PMID 30382811.
- ^ Sam Giles; Molly Rogers; Matt Friedman (2018). "Bony labyrinth morphology in early neopterygian fishes (Actinopterygii: Neopterygii)". Journal of Morphology. 279 (4): 426–440. doi:10.1002/jmor.20551. PMID 27165962. S2CID 3867139.
- ^ John T. Clarke; Matt Friedman (2018). "Body-shape diversity in Triassic–Early Cretaceous neopterygian fishes: sustained holostean disparity and predominantly gradual increases in teleost phenotypic variety". Paleobiology. 44 (3): 402–433. Bibcode:2018Pbio...44..402C. doi:10.1017/pab.2018.8. S2CID 90207334.
- ^ Romain Vullo; Jean-Pierre Archambeau; Gilles Bailly; Pierre Bénéfice (2018). "Reassessment of Cosmodus Sauvage, 1879, a poorly known genus of large pycnodont fish (Actinopterygii, Pycnodontiformes) from the Cenomanian (Upper Cretaceous) of Western Europe" (PDF). Cretaceous Research. 91: 217–228. Bibcode:2018CrRes..91..217V. doi:10.1016/j.cretres.2018.05.019. S2CID 59435077.
- ^ John Joseph Cawley; Giuseppe Marramà; Giorgio Carnevale; Jürgen Kriwet (2018). "A quantitative approach to determine the taxonomic identity and ontogeny of the pycnodontiform fish Pycnodus (Neopterygii, Actinopterygii) from the Eocene of Bolca Lagerstätte, Italy". PeerJ. 6: e4809. doi:10.7717/peerj.4809. PMC 5961631. PMID 29796348.
- ^ Luigi Capasso (2018). "The flank bar-scales in Pycnodontiformes, Berg (1937): morphology, structure, evolutionary significance, and possible functional interpretation as venom apparatus" (PDF). Bollettino del Museo Civico di Storia Naturale di Verona. 42: 21–42.
- ^ a b Martin Ebert (2018). "Cerinichthys koelblae, gen. et sp. nov., from the Upper Jurassic of Cerin, France, and its phylogenetic setting, leading to a reassessment of the phylogenetic relationships of Halecomorphi (Actinopterygii)". Journal of Vertebrate Paleontology. 38 (1): e1420071. Bibcode:2018JVPal..38E0071E. doi:10.1080/02724634.2017.1420071. S2CID 89886438.
- ^ Guang-Hui Xu; Xin-Ying Ma (2018). "Redescription and phylogenetic reassessment of Asialepidotus shingyiensis (Holostei: Halecomorphi) from the Middle Triassic (Ladinian) of China". Zoological Journal of the Linnean Society. 184 (1): 95–114. doi:10.1093/zoolinnean/zlx105.
- ^ Adriana López-Arbarello; Emilia Sferco (2018). "Neopterygian phylogeny: the merger assay". Royal Society Open Science. 5 (3): 172337. Bibcode:2018RSOS....572337L. doi:10.1098/rsos.172337. PMC 5882744. PMID 29657820.
- ^ Humberto G. Ferrón; Borja Holgado; Jeffrey J. Liston; Carlos Martínez-Pérez; Héctor Botella (2018). "Assessing metabolic constraints on the maximum body size of actinopterygians: locomotion energetics of Leedsichthys problematicus (Actinopterygii, Pachycormiformes)". Palaeontology. 61 (5): 775–783. Bibcode:2018Palgy..61..775F. doi:10.1111/pala.12369. hdl:10550/85571. S2CID 134886017.
- ^ Max Casson; Lionel Cavin; Jason Jeremiah; Luc G. Bulot; Jonathan Redfern (2018). "Fishing in the Central Atlantic, an earliest Cenomanian ichthyodectiform from DSDP Site 367, Cape Verde Basin". Journal of Vertebrate Paleontology. 38 (5): e1510415. Bibcode:2018JVPal..38E0415C. doi:10.1080/02724634.2018.1510415. S2CID 92448325.
- ^ Justin C. Bagley; Richard L. Mayden; Phillip M. Harris (2018). "Phylogeny and divergence times of suckers (Cypriniformes: Catostomidae) inferred from Bayesian total-evidence analyses of molecules, morphology, and fossils". PeerJ. 6: e5168. doi:10.7717/peerj.5168. PMC 6035723. PMID 30013838.
- ^ Michael E. Alfaro; Brant C. Faircloth; Richard C. Harrington; Laurie Sorenson; Matt Friedman; Christine E. Thacker; Carl H. Oliveros; David Černý; Thomas J. Near (2018). "Explosive diversification of marine fishes at the Cretaceous–Palaeogene boundary". Nature Ecology & Evolution. 2 (4): 688–696. Bibcode:2018NatEE...2..688A. doi:10.1038/s41559-018-0494-6. PMID 29531346. S2CID 3865532.
- ^ Louis Taverne (2018). "The Mesozoic fish genus Pholidophorus (Teleostei, Pholidophoriformes), with an osteological study of the type-species Pholidophorus latiusculus. Comments on some problems concerning the "pholidophoriform" fishes" (PDF). Geo-Eco-Trop. 42 (1): 89–116.
- ^ Hermione Beckett; Sam Giles; Matt Friedman (2018). "Comparative anatomy of the gill skeleton of fossil Aulopiformes (Teleostei: Eurypterygii)". Journal of Systematic Palaeontology. 16 (14): 1221–1245. Bibcode:2018JSPal..16.1221B. doi:10.1080/14772019.2017.1387184. S2CID 90568133.
- ^ Donald Davesne; Pierre Gueriau; Didier B. Dutheil; Loïc Bertrand (2018). "Exceptional preservation of a Cretaceous intestine provides a glimpse of the early ecological diversity of spiny-rayed fishes (Acanthomorpha, Teleostei)". Scientific Reports. 8 (1): Article number 8509. Bibcode:2018NatSR...8.8509D. doi:10.1038/s41598-018-26744-3. PMC 5981375. PMID 29855529.
- ^ Donald Davesne; François J. Meunier; Matt Friedman; Roger B. J. Benson; Olga Otero (2018). "Histology of the endothermic opah (Lampris sp.) suggests a new structure–function relationship in teleost fish bone". Biology Letters. 14 (6): 20180270. doi:10.1098/rsbl.2018.0270. PMC 6030602. PMID 29950318.
- ^ Tomáš Pikryl; Ionut Grădianu; Victor Georgescu; Giorgio Carnevale (2018). "A toadfish (Batrachoidiformes) from the Oligocene of the Eastern Carpathians (Piatra Neamt, Romania)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 287 (2): 241–248. doi:10.1127/njgpa/2018/0715.
- ^ Emanuell Ribeiro; Aaron M. Davis; Rafael A. Rivero-Vega; Guillermo Ortí; Ricardo Betancur-R (2018). "Post-Cretaceous bursts of evolution along the benthic-pelagic axis in marine fishes". Proceedings of the Royal Society B: Biological Sciences. 285 (1893): 20182010. doi:10.1098/rspb.2018.2010. PMC 6304066. PMID 30963906.
- ^ a b Hermione T. Beckett; Sam Giles; Zerina Johanson; Matt Friedman (2018). "Morphology and phylogenetic relationships of fossil snake mackerels and cutlassfishes (Trichiuroidea) from the Eocene (Ypresian) London Clay Formation". Papers in Palaeontology. 4 (4): 577–603. Bibcode:2018PPal....4..577B. doi:10.1002/spp2.1221. hdl:2027.42/146609. S2CID 89750616.
- ^ Giorgio Carnevale; James C. Tyler (2018). "The caudal skeleton of Arambourgthurus scombrurus (Arambourg, 1967), a Paleogene oceanic surgeonfish". Proceedings of the Biological Society of Washington. 131 (1): 101–110. doi:10.2988/17-00023. S2CID 89971042.
- ^ M. Bieńkowska-Wasiluk; M. Pałdyna (2018). "The Oligocene percoid fish, Oligoserranoides budensis (Heckel, 1856), from the Paratethys". Geologica Acta. 16 (1): 75–92. doi:10.1344/GeologicaActa2018.16.1.5.
- ^ Kathlyn M. Stewart; Scott J. Rufolo (2018). "Kanapoi revisited: Paleoecological and biogeographical inferences from the fossil fish". Journal of Human Evolution. 140: Article 102452. doi:10.1016/j.jhevol.2018.01.008. PMID 29602541. S2CID 4505213.
- ^ Dana J. Ehret; T. Lynn Harrell, Jr. (2018). "Feeding traces on a Pteranodon (Reptilia: Pterosauria) bone from the Late Cretaceous (Campanian) Mooreville Chalk in Alabama, USA". PALAIOS. 33 (9): 414–418. Bibcode:2018Palai..33..414E. doi:10.2110/palo.2018.024. S2CID 135332458.
- ^ David W.E. Hone; Mark P. Witton; Michael B. Habib (2018). "Evidence for the Cretaceous shark Cretoxyrhina mantelli feeding on the pterosaur Pteranodon from the Niobrara Formation". PeerJ. 6: e6031. doi:10.7717/peerj.6031. PMC 6296329. PMID 30581660.
- ^ Uthumporn Deesri; Lionel Cavin; Romain Amiot; Nathalie Bardet; Eric Buffetaut; Gilles Cuny; Stephen Giner; Jeremy E. Martin; Guillaume Suan (2018). "A mawsoniid coelacanth (Sarcopterygii: Actinistia) from the Rhaetian (Upper Triassic) of the Peygros quarry, Le Thoronet (Var, southeastern France)". Geological Magazine. 155 (1): 187–192. Bibcode:2018GeoM..155..187D. doi:10.1017/S0016756817000619. S2CID 134867757.
- ^ Oleg Lebedev; Ervīns Lukševičs (2018). "New materials on Ventalepis ketleriensis Schultze, 1980 extend the zoogeographic area of a Late Devonian vertebrate assemblage". Acta Geologica Polonica. 68 (3): 437–454. doi:10.1515/agp-2018-0023 (inactive 1 November 2024).
{{cite journal}}
: CS1 maint: DOI inactive as of November 2024 (link) - ^ Struan A.C. Henderson; Tom J. Challands (2018). "The cranial endocast of the Upper Devonian dipnoan "Chirodipterus" australis". PeerJ. 6: e5148. doi:10.7717/peerj.5148. PMC 6037139. PMID 30002977.
- ^ Piotr Skrzycki; Grzegorz Niedźwiedzki; Mateusz Tałanda (2018). "Dipnoan remains from the Lower-Middle Triassic of the Holy Cross Mountains and northeastern Poland, with remarks on dipnoan palaeobiogeography". Palaeogeography, Palaeoclimatology, Palaeoecology. 496: 332–345. Bibcode:2018PPP...496..332S. doi:10.1016/j.palaeo.2018.01.049.
- ^ A. G. Sennikov (2018). "Lungfish (Dipnoi) burrows from the Triassic of the Southern Cis-Urals". Paleontological Journal. 52 (12): 1408–1411. Bibcode:2018PalJ...52.1408S. doi:10.1134/S003103011812016X. S2CID 92099900.
- ^ Anne Kemp (2018). "Adaptations to life in freshwater for Mioceratodus gregoryi, a lungfish from Redbank Plains, an Eocene locality in southeast Queensland, Australia". Alcheringa: An Australasian Journal of Palaeontology. 42 (2): 305–310. Bibcode:2018Alch...42..305K. doi:10.1080/03115518.2017.1395076. S2CID 135389476.
- ^ Jonathan E. Jeffery; Glenn W. Storrs; Timothy Holland; Clifford J. Tabin; Per E. Ahlberg (2018). "Unique pelvic fin in a tetrapod-like fossil fish, and the evolution of limb patterning". Proceedings of the National Academy of Sciences of the United States of America. 115 (47): 12005–12010. Bibcode:2018PNAS..11512005J. doi:10.1073/pnas.1810845115. PMC 6255188. PMID 30397126.
- ^ Edward B. Daeschler; Jason P. Downs (2018). "New description and diagnosis of Hyneria lindae (Sarcopterygii, Tristichopteridae) from the Upper Devonian Catskill Formation in Pennsylvania, U.S.A.". Journal of Vertebrate Paleontology. 38 (3): e1448834. Bibcode:2018JVPal..38E8834D. doi:10.1080/02724634.2018.1448834. S2CID 89661336.
- ^ Yu-Hai Liu; Zhi-Kun Gai; Min Zhu (2018). "New findings of galeaspids (Agnatha) from the Lower Devonian of Qujing, Yunnan, China". Vertebrata PalAsiatica. 56 (1): 1–15. doi:10.19615/j.cnki.1000-3118.170418.
- ^ a b Vadim Glinskiy (2018). "Phylogenetic relationships of psammosteid heterostracans (Pteraspidiformes), Devonian jawless vertebrates". Biological Communications. 62 (4): 219–243. doi:10.21638/11701/spbu03.2017.402. hdl:11701/10257.
- ^ David K. Elliott; Linda S. Lassiter; Alain Blieck (2018). "A new species of cyathaspid (Vertebrata: Pteraspidomorphi: Heterostraci) from the Lower Devonian Drake Bay Formation, Prince of Wales Island, Nunavut, Arctic Canada". Estonian Journal of Earth Sciences. 67 (1): 88–95. doi:10.3176/earth.2018.06.
- ^ Oive Tinn; Tiiu Märss (2018). "The earliest osteostracan Kalanaspis delectabilis gen. et sp. nov. from the mid-Aeronian (mid-Llandovery, lower silurian) of Estonia". Journal of Vertebrate Paleontology. 38 (1): e1425212. Bibcode:2018JVPal..38E5212T. doi:10.1080/02724634.2017.1425212. S2CID 90116881.
- ^ a b c Zhikun Gai; Liwu Lu; Wenjin Zhao; Min Zhu (2018). "New polybranchiaspiform fishes (Agnatha: Galeaspida) from the Middle Palaeozoic of China and their ecomorphological implications". PLOS ONE. 13 (9): e0202217. Bibcode:2018PLoSO..1302217G. doi:10.1371/journal.pone.0202217. PMC 6145596. PMID 30231026.
- ^ Susan Turner; Carole J. Burrow (2018). "Microvertebrates from the Silurian–Devonian boundary beds of the Eastport Formation, Maine, eastern USA". Atlantic Geology. 54: 171–187. doi:10.4138/atlgeol.2018.006.
- ^ Robert K. Carr (2018). "A new aspinothoracid arthrodire from the Late Devonian of Ohio, U.S.A." Acta Geologica Polonica. 68 (3): 363–379. doi:10.1515/agp-2018-0021 (inactive 1 November 2024).
{{cite journal}}
: CS1 maint: DOI inactive as of November 2024 (link) - ^ Elga Mark-Kurik; Michael J. Newman; Ursula Toom; Jan L. den Blaauwen (2018). "A new species of the antiarch Microbrachius from the Middle Devonian (Givetian) of Belarus". Estonian Journal of Earth Sciences. 67 (1): 3. doi:10.3176/earth.2017.22.
- ^ Zhaohui Pan; Min Zhu; You’An Zhu; Liantao Jia (2018). "A new antiarch placoderm from the Emsian (Early Devonian) of Wuding, Yunnan, China". Alcheringa: An Australasian Journal of Palaeontology. 42 (1): 10–21. Bibcode:2018Alch...42...10P. doi:10.1080/03115518.2017.1338357. S2CID 134431456.
- ^ D. V. Pinakhina (2018). "A new cheiracanthid acanthodian species from the Aruküla Regional Stage (Middle Devonian, Givetian) of the eastern Main Devonian Field". Paleontological Journal. 52 (1): 42–48. Bibcode:2018PalJ...52...42P. doi:10.1134/S0031030118010112. S2CID 89748444.
- ^ Carole J. Burrow; Michael J. Newman; Jan L. den Blaauwen (2020). "Cheiracanthid acanthodians from the