Mathematical function
A=M=0, K=C=1, B=3, ν=0.5, Q=0.5 Effect of varying parameter A. All other parameters are 1. Effect of varying parameter B. A = 0, all other parameters are 1. Effect of varying parameter C. A = 0, all other parameters are 1. Effect of varying parameter K. A = 0, all other parameters are 1. Effect of varying parameter Q. A = 0, all other parameters are 1. Effect of varying parameter ν {\displaystyle \nu } . A = 0, all other parameters are 1. The generalized logistic function or curve is an extension of the logistic or sigmoid functions. Originally developed for growth modelling, it allows for more flexible S-shaped curves. The function is sometimes named Richards's curve after F. J. Richards , who proposed the general form for the family of models in 1959.
Richards's curve has the following form:
Y ( t ) = A + K − A ( C + Q e − B t ) 1 / ν {\displaystyle Y(t)=A+{K-A \over (C+Qe^{-Bt})^{1/\nu }}} where Y {\displaystyle Y} = weight, height, size etc., and t {\displaystyle t} = time. It has six parameters:
A {\displaystyle A} : the left horizontal asymptote; K {\displaystyle K} : the right horizontal asymptote when C = 1 {\displaystyle C=1} . If A = 0 {\displaystyle A=0} and C = 1 {\displaystyle C=1} then K {\displaystyle K} is called the carrying capacity ; B {\displaystyle B} : the growth rate; ν > 0 {\displaystyle \nu >0} : affects near which asymptote maximum growth occurs. Q {\displaystyle Q} : is related to the value Y ( 0 ) {\displaystyle Y(0)} C {\displaystyle C} : typically takes a value of 1. Otherwise, the upper asymptote is A + K − A C 1 / ν {\displaystyle A+{K-A \over C^{\,1/\nu }}} The equation can also be written:
Y ( t ) = A + K − A ( C + e − B ( t − M ) ) 1 / ν {\displaystyle Y(t)=A+{K-A \over (C+e^{-B(t-M)})^{1/\nu }}} where M {\displaystyle M} can be thought of as a starting time, at which Y ( M ) = A + K − A ( C + 1 ) 1 / ν {\displaystyle Y(M)=A+{K-A \over (C+1)^{1/\nu }}} . Including both Q {\displaystyle Q} and M {\displaystyle M} can be convenient:
Y ( t ) = A + K − A ( C + Q e − B ( t − M ) ) 1 / ν {\displaystyle Y(t)=A+{K-A \over (C+Qe^{-B(t-M)})^{1/\nu }}} this representation simplifies the setting of both a starting time and the value of Y {\displaystyle Y} at that time.
The logistic function , with maximum growth rate at time M {\displaystyle M} , is the case where Q = ν = 1 {\displaystyle Q=\nu =1} .
Generalised logistic differential equation [ edit ] A particular case of the generalised logistic function is:
Y ( t ) = K ( 1 + Q e − α ν ( t − t 0 ) ) 1 / ν {\displaystyle Y(t)={K \over (1+Qe^{-\alpha \nu (t-t_{0})})^{1/\nu }}} which is the solution of the Richards's differential equation (RDE):
Y ′ ( t ) = α ( 1 − ( Y K ) ν ) Y {\displaystyle Y^{\prime }(t)=\alpha \left(1-\left({\frac {Y}{K}}\right)^{\nu }\right)Y} with initial condition
Y ( t 0 ) = Y 0 {\displaystyle Y(t_{0})=Y_{0}} where
Q = − 1 + ( K Y 0 ) ν {\displaystyle Q=-1+\left({\frac {K}{Y_{0}}}\right)^{\nu }} provided that ν > 0 {\displaystyle \nu >0} and α > 0 {\displaystyle \alpha >0}
The classical logistic differential equation is a particular case of the above equation, with ν = 1 {\displaystyle \nu =1} , whereas the Gompertz curve can be recovered in the limit ν → 0 + {\displaystyle \nu \rightarrow 0^{+}} provided that:
α = O ( 1 ν ) {\displaystyle \alpha =O\left({\frac {1}{\nu }}\right)} In fact, for small ν {\displaystyle \nu } it is
Y ′ ( t ) = Y r 1 − exp ( ν ln ( Y K ) ) ν ≈ r Y ln ( Y K ) {\displaystyle Y^{\prime }(t)=Yr{\frac {1-\exp \left(\nu \ln \left({\frac {Y}{K}}\right)\right)}{\nu }}\approx rY\ln \left({\frac {Y}{K}}\right)} The RDE models many growth phenomena, arising in fields such as oncology and epidemiology.
Gradient of generalized logistic function [ edit ] When estimating parameters from data, it is often necessary to compute the partial derivatives of the logistic function with respect to parameters at a given data point t {\displaystyle t} (see[ 1] ). For the case where C = 1 {\displaystyle C=1} ,
∂ Y ∂ A = 1 − ( 1 + Q e − B ( t − M ) ) − 1 / ν ∂ Y ∂ K = ( 1 + Q e − B ( t − M ) ) − 1 / ν ∂ Y ∂ B = ( K − A ) ( t − M ) Q e − B ( t − M ) ν ( 1 + Q e − B ( t − M ) ) 1 ν + 1 ∂ Y ∂ ν = ( K − A ) ln ( 1 + Q e − B ( t − M ) ) ν 2 ( 1 + Q e − B ( t − M ) ) 1 ν ∂ Y ∂ Q = − ( K − A ) e − B ( t − M ) ν ( 1 + Q e − B ( t − M ) ) 1 ν + 1 ∂ Y ∂ M = − ( K − A ) Q B e − B ( t − M ) ν ( 1 + Q e − B ( t − M ) ) 1 ν + 1 {\displaystyle {\begin{aligned}\\{\frac {\partial Y}{\partial A}}&=1-(1+Qe^{-B(t-M)})^{-1/\nu }\\\\{\frac {\partial Y}{\partial K}}&=(1+Qe^{-B(t-M)})^{-1/\nu }\\\\{\frac {\partial Y}{\partial B}}&={\frac {(K-A)(t-M)Qe^{-B(t-M)}}{\nu (1+Qe^{-B(t-M)})^{{\frac {1}{\nu }}+1}}}\\\\{\frac {\partial Y}{\partial \nu }}&={\frac {(K-A)\ln(1+Qe^{-B(t-M)})}{\nu ^{2}(1+Qe^{-B(t-M)})^{\frac {1}{\nu }}}}\\\\{\frac {\partial Y}{\partial Q}}&=-{\frac {(K-A)e^{-B(t-M)}}{\nu (1+Qe^{-B(t-M)})^{{\frac {1}{\nu }}+1}}}\\\\{\frac {\partial Y}{\partial M}}&=-{\frac {(K-A)QBe^{-B(t-M)}}{\nu (1+Qe^{-B(t-M)})^{{\frac {1}{\nu }}+1}}}\\\end{aligned}}}
The following functions are specific cases of Richards's curves:
Richards, F. J. (1959). "A Flexible Growth Function for Empirical Use". Journal of Experimental Botany . 10 (2): 290–300. doi :10.1093/jxb/10.2.290 . Pella, J. S.; Tomlinson, P. K. (1969). "A Generalised Stock-Production Model". Bull. Inter-Am. Trop. Tuna Comm . 13 : 421–496. Lei, Y. C.; Zhang, S. Y. (2004). "Features and Partial Derivatives of Bertalanffy–Richards Growth Model in Forestry". Nonlinear Analysis: Modelling and Control . 9 (1): 65–73. doi :10.15388/NA.2004.9.1.15171 .