Mathematical model of a thin, flat object
In mathematics , a planar lamina (or plane lamina [ 1] ) is a figure representing a thin, usually uniform, flat layer of the solid. It serves also as an idealized model of a planar cross section of a solid body in integration .
Planar laminas can be used to determine moments of inertia , or center of mass of flat figures, as well as an aid in corresponding calculations for 3D bodies.
A planar lamina is defined as a figure (a closed set ) D of a finite area in a plane, with some mass m .[ 2]
This is useful in calculating moments of inertia or center of mass for a constant density, because the mass of a lamina is proportional to its area. In a case of a variable density, given by some (non-negative) surface density function ρ ( x , y ) , {\displaystyle \rho (x,y),} the mass m {\displaystyle m} of the planar lamina D is a planar integral of ρ over the figure:[ 3]
m = ∬ D ρ ( x , y ) d x d y {\displaystyle m=\iint _{D}\rho (x,y)\,dx\,dy} The center of mass of the lamina is at the point
( M y m , M x m ) {\displaystyle \left({\frac {M_{y}}{m}},{\frac {M_{x}}{m}}\right)} where M y {\displaystyle M_{y}} is the moment of the entire lamina about the y-axis and M x {\displaystyle M_{x}} is the moment of the entire lamina about the x-axis:
M y = lim m , n → ∞ ∑ i = 1 m ∑ j = 1 n x i j ∗ ρ ( x i j ∗ , y i j ∗ ) Δ D = ∬ D x ρ ( x , y ) d x d y {\displaystyle M_{y}=\lim _{m,n\to \infty }\,\sum _{i=1}^{m}\,\sum _{j=1}^{n}\,x{_{ij}}^{*}\,\rho \ (x{_{ij}}^{*},y{_{ij}}^{*})\,\Delta D=\iint _{D}x\,\rho \ (x,y)\,dx\,dy} M x = lim m , n → ∞ ∑ i = 1 m ∑ j = 1 n y i j ∗ ρ ( x i j ∗ , y i j ∗ ) Δ D = ∬ D y ρ ( x , y ) d x d y {\displaystyle M_{x}=\lim _{m,n\to \infty }\,\sum _{i=1}^{m}\,\sum _{j=1}^{n}\,y{_{ij}}^{*}\,\rho \ (x{_{ij}}^{*},y{_{ij}}^{*})\,\Delta D=\iint _{D}y\,\rho \ (x,y)\,dx\,dy} with summation and integration taken over a planar domain D {\displaystyle D} .
Find the center of mass of a lamina with edges given by the lines x = 0 , {\displaystyle x=0,} y = x {\displaystyle y=x} and y = 4 − x {\displaystyle y=4-x} where the density is given as ρ ( x , y ) = 2 x + 3 y + 2 {\displaystyle \rho \ (x,y)\,=2x+3y+2} .
For this the mass m {\displaystyle m} must be found as well as the moments M y {\displaystyle M_{y}} and M x {\displaystyle M_{x}} .
Mass is m = ∬ D ρ ( x , y ) d x d y {\displaystyle m=\iint _{D}\rho (x,y)\,dx\,dy} which can be equivalently expressed as an iterated integral :
m = ∫ x = 0 2 ∫ y = x 4 − x ( 2 x + 3 y + 2 ) d y d x {\displaystyle m=\int _{x=0}^{2}\int _{y=x}^{4-x}\,(2x+3y+2)\,dy\,dx} The inner integral is:
∫ y = x 4 − x ( 2 x + 3 y + 2 ) d y {\displaystyle \int _{y=x}^{4-x}\,(2x+3y+2)\,dy} = ( 2 x y + 3 y 2 2 + 2 y ) | y = x 4 − x {\displaystyle \qquad =\left.\left(2xy+{\frac {3y^{2}}{2}}+2y\right)\right|_{y=x}^{4-x}} = [ 2 x ( 4 − x ) + 3 ( 4 − x ) 2 2 + 2 ( 4 − x ) ] − [ 2 x ( x ) + 3 ( x ) 2 2 + 2 ( x ) ] {\displaystyle \qquad =\left[2x(4-x)+{\frac {3(4-x)^{2}}{2}}+2(4-x)\right]-\left[2x(x)+{\frac {3(x)^{2}}{2}}+2(x)\right]} = − 4 x 2 − 8 x + 32 {\displaystyle \qquad =-4x^{2}-8x+32} Plugging this into the outer integral results in:
m = ∫ x = 0 2 ( − 4 x 2 − 8 x + 32 ) d x = ( − 4 x 3 3 − 4 x 2 + 32 x ) | x = 0 2 = 112 3 {\displaystyle {\begin{aligned}m&=\int _{x=0}^{2}\left(-4x^{2}-8x+32\right)\,dx\\&=\left.\left(-{\frac {4x^{3}}{3}}-4x^{2}+32x\right)\right|_{x=0}^{2}\\&={\frac {112}{3}}\end{aligned}}} Similarly are calculated both moments:
M y = ∬ D x ρ ( x , y ) d x d y = ∫ x = 0 2 ∫ y = x 4 − x x ( 2 x + 3 y + 2 ) d y d x {\displaystyle M_{y}=\iint _{D}x\,\rho (x,y)\,dx\,dy=\int _{x=0}^{2}\int _{y=x}^{4-x}x\,(2x+3y+2)\,dy\,dx} with the inner integral:
∫ y = x 4 − x x ( 2 x + 3 y + 2 ) d y {\displaystyle \int _{y=x}^{4-x}x\,(2x+3y+2)\,dy} = ( 2 x 2 y + 3 x y 2 2 + 2 x y ) | y = x 4 − x {\displaystyle \qquad =\left.\left(2x^{2}y+{\frac {3xy^{2}}{2}}+2xy\right)\right|_{y=x}^{4-x}} = − 4 x 3 − 8 x 2 + 32 x {\displaystyle \qquad =-4x^{3}-8x^{2}+32x} which makes:
M y = ∫ x = 0 2 ( − 4 x 3 − 8 x 2 + 32 x ) d x = ( − x 4 − 8 x 3 3 + 16 x 2 ) | x = 0 2 = 80 3 {\displaystyle {\begin{aligned}M_{y}&=\int _{x=0}^{2}(-4x^{3}-8x^{2}+32x)\,dx\\&=\left.\left(-x^{4}-{\frac {8x^{3}}{3}}+16x^{2}\right)\right|_{x=0}^{2}\\&={\frac {80}{3}}\end{aligned}}} and
M x = ∬ D y ρ ( x , y ) d x d y = ∫ x = 0 2 ∫ y = x 4 − x y ( 2 x + 3 y + 2 ) d y d x = ∫ 0 2 ( x y 2 + y 3 + y 2 ) | y = x 4 − x d x = ∫ 0 2 ( − 2 x 3 + 4 x 2 − 40 x + 80 ) d x = ( − x 4 2 + 4 x 3 3 − 20 x 2 + 80 x ) | x = 0 2 = 248 3 {\displaystyle {\begin{aligned}M_{x}&=\iint _{D}y\,\rho (x,y)\,dx\,dy=\int _{x=0}^{2}\int _{y=x}^{4-x}y\,(2x+3y+2)\,dy\,dx\\&=\int _{0}^{2}(xy^{2}+y^{3}+y^{2}){\Big |}_{y=x}^{4-x}\,dx\\&=\int _{0}^{2}(-2x^{3}+4x^{2}-40x+80)\,dx\\&=\left.\left(-{\frac {x^{4}}{2}}+{\frac {4x^{3}}{3}}-20x^{2}+80x\right)\right|_{x=0}^{2}\\&={\frac {248}{3}}\end{aligned}}} Finally, the center of mass is
( M y m , M x m ) = ( 80 3 112 3 , 248 3 112 3 ) = ( 5 7 , 31 14 ) {\displaystyle \left({\frac {M_{y}}{m}},{\frac {M_{x}}{m}}\right)=\left({\frac {\frac {80}{3}}{\frac {112}{3}}},{\frac {\frac {248}{3}}{\frac {112}{3}}}\right)=\left({\frac {5}{7}},{\frac {31}{14}}\right)} ^ Atkins, Tony; Escudier, Marcel (2013), "Plane lamina" , A Dictionary of Mechanical Engineering (1 ed.) , Oxford University Press , doi :10.1093/acref/9780199587438.001.0001 , ISBN 9780199587438 , retrieved 2021-06-08 ^ "Planar Laminae" , WolframAlpha , retrieved 2021-03-09 ^ "Lamina" . MathWorld . Retrieved 2021-03-09 .