Selenogallate

Selenogallates (or selenidogallates) are chemical compounds which contain anionic units of selenium connected to gallium. They can be considered as gallates where selenium substitutes for oxygen. Similar compounds include the thiogallates and selenostannates. They are in the category of chalcogenotrielates or more broadly chalcogenometallates.[1]

Formation

[edit]

Selenogallates may be produced by heating a metal azide with gallium monoselenide and selenium in a sealed tube.[1]

Selenogallates containing Se2 units are formed by heating with selenium. Conversely, by heating, extra selenium vapour can be lost forming a compound with less selenium.[2]

Properties

[edit]

Most selenogallates are semiconductors. Their resistance drops on exposure to light. Also selenogallates are often coloured, most often red.

Selenogallate structures can include rings such as the four-membered ring: [GaSeGaSe] or the five-membered [GaSeSeGaSe]. These can be linked into chains.

Use

[edit]

Selenogallates are primarily of research interest. They are being researched for photovoltaic cells where efficiencies over 20% are possible,[3] and for photoconductors, and non-linear optical devices.

List

[edit]
name chem mw crystal system space group unit cell Å volume density comment CAS

no

references
LiGaSe2 234.581 orthorhombic Pna21 a=6.8478 b=8.2575 c=6.5521 Z=4 370.5 4.206 band gap 3.39; SHG [4]
[H2dap]4Ga4Se10 dap = 1,2-diaminopropane monoclinic C2/c a 10.821 b 10.820 c 21.386, β 97.265° [5]
[(dienH2)(dienH)3]Ga5Se10 dien = diethylenetriamine monoclinic P21/c a 6.3116 b 13.748 c 47.890 β 90.640° chain [6]
[(tetaH2)3(teta)]Ga6Se12 teta = triethylenetetramine monoclinic Cc a 20.566 b 25.896 c 12.785 β 125.568° chain [6]
[bappH2][Ga2Se4] bapp =1,4-Bis-(3-aminopropyl)piperazine 657.63 triclinic P1 a=6.3517 b=7.8498 c=10.7818 α=71.457° β=84.925° γ=72.084° Z=1 484.93 2.30 yellow; [7]
[1,3-pdaH2][Ga2Se2(Se2)(Se3)] 1,3-pda = 1,3-diaminopropane monoclinic P21 a 7.5724 b 12.3856 c 8.0889 β 94.120° band gap 2.08 eV; GaSeSeSeGaSe & GaSeSeGaSe rings; red [8]
[1,4-bdaH2][Ga2Se3(Se2)] 1,4-bda = 1,4-diaminobutane monoclinic C2/c a 11.7660 b 11.7743 c 10.9763 β 110.170° band gap 2.32 eV; orange [8]
[Me2NH2]2[Ga2Se2(Se2)2] monoclinic P21/c a 14.13 b 8.456 c 14.07 β 100.32° band gap 2.07 eV; red [8]
α-[AEPH]2[Ga2Se2(Se2)2] AEP = N-(2-aminoethyl)piperazine monoclinic Pn a 6.981 b 15.436 c 11.831 β 91.462° band gap 1.93 eV; red [8]
β-[AEPH]2[Ga2Se2(Se2)2] monoclinic P21/c a 10.623 b 16.495 c 7.163 β 94.93° band gap 2.10 eV; red [8]
[Ga(en)3][Ga3Se7(en)] · H2O 1090.02 orthorhombic Pna21 a=14.279 b=9.616 c=19.676 Z=4 2701.6 2.680 bicyclic Ga3Se7 [9]
NaGaS2 monoclinic C2/c a 10.226 b 10.227 c 13.506 β 100.926° 1389.9 [10]
NaGaS2•H2O monoclinic C2/c a=9.5160 b=113986 c=17.8761 β=101.590 1899 [10]
NaGa3Se5 626.95 orthorhombic P212121 a=9.764 b=13.624 c=27.000 Z=16 3591.6 4.638 [11]
KGaSe2 266.74 monoclinic C2/c a = 10.878, b = 10.872, c = 15.380, β = 100.18° Z=16 1790.3 3.959 air stable; light yellow; mp=965 °C; [Ga4Se10]8− units connected into sheets; band gap 2.60 eV [12]
Cr2.37Ga3Se8 monoclinic C2/m magnetic semiconductor; band gap 0.26 eV [13]
MnGa2Se4 band gap 2.7 eV [14]
[Mn(en)3][Ga2Se5] en = Ethylenediamine 771.51 orthorhombic Pbcn a=9.772 b=15.297 c=13.749 Z=4 2055.2 2.50 red; {[Ga2Se5]2-}∞ chains Ga2Se2 and Ga2Se3 rings [7]
[Mn(dap)3]0.5GaSe2 orthorhombic Cmcm a 9.645 b 16.754 c 12.891 [5]
[Mn(atep)]Ga2S4 atep = 4-(2-aminoethyl)triethylenetetramine monoclinic P21/n a 9.909 b 11.947 c 14.831, β 102.268° [5]
[Co(en)3]Ga2Se orthorhombic Cmcm a 9.692 b 15.631 c 12.698 band gap 3.27 eV [6]
{[Ni(tepa)]2SO4}[Ni(tepa)(Ga4S6(SH)4)] tepa = tetraethylenepentamine monoclinic C2/c a 38.829 b 12.290 c 22.471 β 98.398° [5]
cupric selenogallate CuGaSe2 291.186 tetragonal a = 5.5963 c = 11.0036 Z=4 344.617 5.612 metallic grey [15]
ZnGa2Se4 tetragonal I42m [16]
ZnGa2Se4 cubic Fm3m >15.5GPa [16]
Na3Zn2Ga2Se4 519.90 tetragonal I41acd a 13.481 c 19.26 Z=16 3500 3.946 red [17]
Na6Zn3Ga2Se9 monoclinic C2/c a 16.71 b 16.69 c 13.79 β 101.346° [18]
KZn4Ga5Se12 R3 SHG [19]
LiGaGe2Se6 695.60 orthorhombic Fdd2 a 12.5035 b 23.710 c 7.1177 2110.1 4.336 brown; band gap 2.64 eV; mp=710 °C [20][21]
Li2Ga2GeS6 orthorhombic Fdd2 a=12.0796 b=22.73 c=6.84048 [22]
NaGaGe3Se8 monoclinic P21/c a 7.233 b 11.889 c 17.550 β 101.75° [23]
KGaGeSe4 497.25 monoclinic P21/c a=7.3552 b=12.4151 c=17.6213 β =97.026 Z=8 1597.02 4.136 yellow [24]
RbGaSe2 313.11 monoclinic C2/c a = 10.954, b = 10.949, c = 16.064, β = 99.841° Z=16 1898.2 4.382 colourless; mp=930 °C; 2[Ga4Se88−] layers of supertetrahedra; [1]
RbZn4Ga5Se12 R3 SHG [19]
RbGaGeSe4 543.62 orthorhombic Pnma a=17.5750 b=7.4718 c=12.4449 Z=8 1634.23 4.419 orange [24]
AgGaSe2 tetragonal I42d a = 5.9921, c = 10.883 5.71 transparent from 0.71 to 18 μm; band gap ~1.7 [25]
AgGa5Se8 P42m a=5.50 c=11.04 band gap 2.1 eV [25]
Ag9GaSe6 P213 band gap 0.56 eV [25]
Ag9GaSe6 cubic F43m a=11.126 [25]
LixAg1–xGaSe2 (x = 0.2–0.8) tetragonal I42d SHG [4]
Na0.45Ag0.55Ga3Se5 trigonal R32 a=13.466 c=16.495 Z=12 2590.5 SHG 1.9 × AGS [26]
KAg3Ga8Se14 2025.91 monoclinic Cm a 12.8805 b 11.6857 c 9.6600 β 115.998° Z=2 1306.87 5.148 orange [27]
AgGaGe5Se12 red; transparent for 0.6–16.5 μm; band gap 2.2 eV [28]
CdGa2Se4 tetragonal I4 a=5.3167 c=10.2858 Z=2 semiconductor [29][30]
CdGa2Se4 cubic F43m a=5.64 Z=4 >21 GPa metallic [30]
CdGa2Se4 cubic Fm3m a=5.03 Z=4 4-7.4 GPa [30]
KCd4Ga5Se12 trigonal R3 a 14.362 b 14.362 c 9.724 [31]
RbCd4Ga5Se12 trigonal R3 a 14.4055 b 14.4055 c 9.7688 band gap 2.19 eV; SHG=19×AgGaS2 [32][31]
InGaSe2 tetragonal I4/mcm a = 8.051, c = 6.317 Z=4 [33]
SnGa4Se7 622.08 monoclinic Pc a=7.269 b=6.361 c=12.408 β =106.556 Z=2 549.9 3.757 light yellow;SHG 3.8 × AgGaS2 [34]
KGaSnSe4-cP84 543.35 cubic Pa3 a=13.5555 Z=12 2490.8 4.347 red [24]
RbGaSnSe4-cP84 cubic Pa3 a=13.7200 Z=12 589.72 4.550 [24]
RbGaSn2Se6 866.33 trigonal R3 a=10.4697 c=9.476 Z=3 899.5 4.798 deep red [35]
SnGa2GeSe6 804.48 orthorhombic Fdd2 a = 47.195, b = 7.521, c = 12.183, Z = 16 4324 4.943 red; SHG 1.7 × AgGaS2
CsGaSe2-mC64 monoclinic C2/c a = 11.043, b = 11.015, c = 16.810, β = 99.49°, Z = 16 2016.7 light grey; layers of supertetrahedra 2[Ga4Se84–]; band gap 3.5 eV [36]
CsGaSe2-mC16 monoclinic C2/c a = 7.651, b = 12.552, c = 6.170, β = 113.62°, Z = 4 542.9 over 610 °C; chains 1[GaSe2] [36]
CsGaSe3 monoclinic P21/c a=7.727, b=13.014, c=6.705, β=106.39°, Z=4 red; chains; band gap 2.25 eV [37]
Cs2Ga2Se5 800.07 monoclinic C2/c a = 15.3911, b = 7.3577, c = 12.9219, β = 126.395°, Z = 4 1177.89 4.51 yellow; 1[Ga2Se3(Se2)2–] band gap 1.95 eV [38]
Cs4Ga6Se11 triclinic P1 a=9.707 b=9.888 c=16.780 α=76.425° β=77.076° γ=60.876° 1356.3 1[Ga6Se11]4– [39]
Cs6Ga2Se6 monoclinic P21/c a=8.480 b=13.644 c=11.115 β =126.22 Z=2 mp=685 °C; isolated double tetrahedra [Ga2Se6]6− [40]
Cs8Ga4Se10 triclinic P1 a= 7.870 b=9.420 c=11.282 α=103.84° β=93.43° γ=80.88° Z=1 4.42 tetrameric [41]
Cs10Ga6Se14 monoclinic C2/m a=18.233 b=12.889 c=9.668 β=108.20 Z=2 4.39 hexameric [41]
(Cs6Cl)6Cs3[Ga53Se96] 16671.51 trigonal R3m a = 11.990, c = 50.012 Z=1 6226.5 4.446 yellow; band gap 2.74 eV [42]
CsZn4Ga5Se12 trigonal R3 [19]
CsGaGeSe4 591.06 orthorhombic Pnma a=17.7666 b=7.5171 c=12.6383 Z=8 1687.9 4.652 white [24]
Cs2Ge3Ga6Se14 2007.41 P3m1 a=7.6396 c=13.5866 Z=1 686.72 4.854 black [43]
CsAgGa2Se4 monoclinic P21/c a=11.225, b=7.944, c=21.303, β=103.10, Z=8 1850.3 layered [44]
CsCd4Ga5Se12 trigonal R3 a 14.4204 b 14.4204 c 9.7803 band gap 2.21 eV; SHG=16×AgGaS2 [32][31]
BaGa4Se7 monoclinic Pc a = 7.625, b = 6.511, c = 14.702, β = 121.24° transparent between 0.47 and 18.0 μm; melts 968 °C; SHG [45][46]
Ba4Ga2Se8 132.48 monoclinic P21/c a=13.2393 b=6.4305 c=20.6432 β =104.3148 Z=4 1702.90 5.151 black air stable; band gap 1.51 eV [47][48]
Ba5Ga2Se8 orthorhombic Cmca a 23.433 b 12.461 c 12.214 band gap 2.51 eV [49]
Ba5Ga4Se10 1755.18 tetragonal I4/mcm a = 8.752, c = 13.971 Z = 2 1070.2 5.447 red; bicyclic ring with Ga-Ga bridge; band gap 2.20 eV [50]
Ba3GaSe4Cl orthorhombic Pnma a 12.691 b 9.870 c 8.716 [51]
Ba3GaSe4Br orthorhombic Pnma a = 12.8248, b = 9.9608, c = 8.7690 Z = 4 band gap 1.7 eV [52]
LiBa4Ga5Se12 1852.42 tetragonal P421c a 13.591 c 6.515 Z=2 1203.3 5.113 yellow; band gap 2.44 eV; SHG 1.7×AgGaS2 [32][53]
NaBaGaSe3 orthorhombic Pnma a 20.46 b 9.177 c 7.177 1347 colourless [54]
(Na0.60Ba0.70)Ga2Se4 tetragonal I4cm a 7.9549 c 6.2836 397.6 4.725 pale yellow [55]
KBa3Ga5Se10Cl2 tetragonal I4 a 8.6341 c 15.644 1166.2 band gap 2.04 eV; SHG=10×AgGaS2 [32][56]
MnBa4Ga4Se10Cl2 tetragonal I4 8.5858 c 15.7739 band gap 2.8 eV; SHG=30×AgGaS2 [32][57]
FeBa4Ga4Se10Cl2 tetragonal I4 a 8.578 c 15.717 band gap 1.88 eV [32][57]
CoBa4Ga4Se10Cl2 tetragonal I4 a 8.572 c 15.716 band gap 2.02 eV [32][57]
Cu0.5Ba4Ga4.5Se10Cl2 tetragonal I4 a 8.559 c 15.778 band gap 2.6 eV; SHG=39×AgGaS2 [32][57]
CuBa4Ga5Se12 P421c a = 13.598, c = 6.527, Z = 2 band gap 1.45 eV; SHG=3×AgGaS2 [32][58]
ZnBa4Ga4Se10Cl2 tetragonal I4 a 8.561 c 15.757 band gap 3.08 eV; SHG=59×AgGaS2 [32][57]
Ba10Zn7Ga6Se26 tetragonal I42m a 11.2907 c 21.760 Z=2 2774.0 5.151 yellow [59]
Ba4Ga4GeSe12 1848.35 tetragonal P421c a=13.5468 c=6.4915 Z=2 1191.29 5.153 orange yellow; band gap 2.18 eV [47][60]
BaGa2GeSe6 R3 [61]
RbBa3Ga5Se10Cl2 tetragonal I4 a 8.6629 c 15.6379 band gap 2.05 eV; SHG=20×AgGaS2 [32][56]
Ba2GaYSe5 triclinic P1 a 7.2876Å b 8.6597Å c 9.3876Å, α 103.51° β 103.04° γ 107.43° [62]
Ba4AgGaSe6 1199.44 orthorhombic Pnma a=9.1006 b=4.472 c=17.7572 Z=2 722.71 5.512 dark red; air stable; band gap 2.50 [63]
Ba4AgGa5Se12 1953.35 tetragonal P421c a 13.6544 c 6.5215 Z=2 1215.9 5.335 yellow [53]
Ba7AgGa5Se15 trigonal P31c a 10.0467 c 18.689 band gap 2.60 eV [64]
CdBa4Ga4Se10Cl2 tetragonal I4 a 8.611 c 15.805 band gap 3.05 eV; SHG=52×AgGaS2 [32][57]
Ba5CdGa6Se12 2401.82 orthorhombic Ama2 a=24.2458 b=19.1582 c=6.6208 Z=4 3075.4 5.187 yellow; air stable; band gap 2.60 eV; mp=866 °C [47][65]
BaGa2SnSe6 869.23 trigonal R3 a = 10.145, c = 9.249 Z = 3 824.4 5.253 red; SHG 5.2×AgGaS2 [66]
Ba4Ga4SnSe12 1894.45 tetragonal P421c a 13.607 c 6.509 Z=2 1205.2 5.221 red; band gap 2.16 eV [67]
Ba6Ga2SnSe11 1950.73 monoclinic P21/c a 18.715 b 7.109 c 19.165, β 103.29° 2481.5 5.221 red; bad gap 1.99 eV [67]
Ba2AsGaSe5 814.12 orthorhombic Pnma a = 12.632, b = 8.973, c = 9.203, Z = 4 1043.1 5.184 black [68]
CsBa3Ga5Se10Cl2 tetragonal I4 a 8.734 c 15.697 1197.6 band gap 2.08 eV; SHG=100×AgGaS2 [32][56]
NaLaGa4Se8 orthorhombic Fddd a 21.1979 b 21.1625 c 12.7216 [69]
La3MnGaSe7 1094.11 hexagonal P63 a 10.5894 c 6.3458 Z=2 616.25 5.896 black [70]
La3FeGaSe7 hexagonal P63 a=10.5042 c=6.3496 606.74 [71]
La3CoGaSe7 hexagonal P63 a=10.5104 c=6.3708 609.48 [71]
La3NiGaSe7 hexagonal P63 a=10.4826 c=6.3964 608.71 [71]
La3CuGaSe7 1102.71 hexagonal P63 a=10.626 c=6.392 Z=2 626.0 5.859 [47]
La3ZnGaSe7 1104.54 hexagonal P63 a=10.630 c=6.374 Z=2 623.7 5.881 [47]
La3Ag0.6GaSe7 hexagonal P63 a=10.6, c=6.4 Z=2 [72]
La3CdGaSe7 hexagonal P63 a=10.606 c=6.380 Z=2 621.5 6.153 [47]
Ba2GaLaSe5 orthorhombic Pnma a 12.5049 b 9.6288 c 8.7355 [73]
NaCeGa4Se8 orthorhombic Fddd a 21.141 b 21.138 c 12.712 [69]
Ce3CuGaSe7 1106.34 hexagonal P63 a=10.6007 c=6.3775 Z=2 620.65 5.920 [47]
Ba2GaCeSe5 orthorhombic Fddd a 12.494 b 9.599 c 8.738 [73]
Pr3CuGaSe7 1108.71 hexagonal P63 a=10.4181 c=6.3743 Z=2 599.16 6.146 [47]
NaNdGa4Se8 orthorhombic Fddd a 21.015 b 21.045 c 12.709 [69]
Nd3FeGaSe7 hexagonal P63 a 10.2453 c 6.4076 Z=2 582.47 [74]
Nd3CoGaSe7 hexagonal P63 a=10.2296 c=6.4272 582.47 [71]
Nd3NiGaSe7 hexagonal P63 a=10.2117 c=6.4066 578.57 [71]
Nd3CuGaSe7 1118.70 hexagonal P63 a=10.3426 c=6.3869 Z=2 591.7 6.279 [47]
Ba2GaNdSe5 triclinic P1 a 7.29Å b 8.7914Å c 9.47Å, α 103.77° β 102.91° γ 107.72° [62]
SmGa2Se4 rhombic a=21.34, b=21.60, c=12.74 [75]
Ba2GaSmSe5 triclinic P1 a 7.3017Å b 8.7635Å c 9.4554Å, α 103.672° β 102.963° γ 107.637° [62]
Gd3FeGaSe7 hexagonal P63 a 10.0762 c 6.4265 Z=2 [74]
Ba2GaGdSe5 triclinic P1 a 7.2834Å b 8.7062Å c 9.4079Å, α 103.65° β 103.02° γ 107.52° [62]
Dy3FeGaSe7 hexagonal P63 a 9.9956Å c 6.398 Z=2 [74]
Ba2GaDySe5 triclinic P1 a 7.2772Å b 8.6543Å c 9.3792Å, α 103.53° β 103.07° γ 107.43° [62]
Ba2GaErErSe5 triclinic P1 a 7.2721Å b 8.6258Å c 9.3621Å, α 103.41° β 103.13° γ 107.39° [62]
Ba2GaTbSe5 triclinic P1 a 7.309 b 8.719 c 9.433, α 103.548° β 103.039° γ 107.520° [73]
Ba2GaHoSe5 triclinic P1 a 7.2964 b 8.670 c 9.406, α 103.482° β 103.049° γ 107.423° [73]
Ba2GaTmSe5 triclinic P1 a 7.2884 b 8.6376 c 9.3823, α 103.429° β 103.075° γ 107.360° [73]
Ba2GaYbSe5 triclinic P1 a 7.2864 b 8.6257 c 9.3716, α 103.4154° β 103.0369° γ 107.3396° [73]
Ba2GaLuSe5 triclinic P1 a 7.2829 b 8.6120 c 9.368, α 103.362° β 103.051° γ 107.308° [73]
HgGa2Se4 [76]
KHg4Ga5Se12 2137.58 trigonal R3 a 14.3203 b 14.3203 c 9.7057 Z=3 1723.7 6.178 band gap 1.61 eV; SHG=20×AgGaS2 [32][77][78]
TlGaSe2 432.01 monoclinic C2/c a=10.760 b=10.762 c=15.626 β=100.19 Z=16 1780.8 6.445 black; layers of supertetrahedra; mp 804 °C; band gap 1.87 eV [79]
TlGaGeSe4 662.52 orthorhombic Pnma a=17.4742 b=7.4105 c=11.9406 Z=8 1546.22 5.692 [24]
Tl2Ga2GeSe6 tetragonal I4/mmc a=8.0770 c=6.2572 Z=4 [80]
Tl0.8Ga0.8Ge1.2Se4-mC112 622.22 monoclinic C2/c a=13.5831 b=7.4015 c=30.7410 β =96.066 Z=16 3073.3 5.379 red [24]
TlGaSnSe4-mP56 701.04 monoclinic P21/c a=7.501 b=12.175 c=18.203 β =97.164 Z=8 1649.4 5.646 red [24]
TlGaSnSe4-cP84 708.62 cubic Pa3 a=13.4755 Z=12 2447.0 5.770 red [24]
Tl2Ga2SnSe6 tetragonal I4/mmc a=8.095 c=6.402 Z=4 [80]
TlGaSn2Se6 R3 a=10.3289 c=9.4340 871.64 5.6301 dark grey in bulk; maroon powder [81]
PbGa2Se4 662.47 orthorhombic Fddd a =12.73 b=21.26 c=21.55 Z=32 5830 6.036 yellow to red; mp 780 °C; band gap 1.83 eV [82][83]
Pb0.72Mn2.84Ga2.95Se8 hexagonal P6 a 17.550 c 3.8916 [84]
PbGa2GeSe6 orthorhombic Fdd2 mp 720 °C biaxial (−) [61]
Pb4Ga4GeSe12 tetragonal P421c a = 13.064 c = 6.310 Z=2 [85]
Ba2GaBiSe5 orthorhombic Pnma a=12.691 b=9.190 c=9.245 Z=4 1078.2 5.841 yellow [86]

References

[edit]
  1. ^ a b c Friedrich, Daniel; Schlosser, Marc; Pfitzner, Arno (2017-11-17). "Synthesis and Structural Characterization of the layered Selenogallate RbGaSe 2: Synthesis and Structural Characterization of the layered Selenogallate RbGaSe 2". Zeitschrift für anorganische und allgemeine Chemie. 643 (21): 1589–1592. doi:10.1002/zaac.201700288.
  2. ^ Friedrich, Daniel; Schlosser, Marc; Näther, Christian; Pfitzner, Arno (7 May 2018). "In Situ X-ray Diffraction Study of the Thermal Decomposition of Selenogallates Cs 2 [Ga 2 (Se 2 ) 2– x Se 2+ x ] ( x = 0, 1, 2)". Inorganic Chemistry. 57 (9): 5292–5298. doi:10.1021/acs.inorgchem.8b00324. PMID 29667827.
  3. ^ Luque, Antonio; Hegedus, Steven (2011-03-29). Handbook of Photovoltaic Science and Engineering. John Wiley & Sons. ISBN 978-0-470-97612-8.
  4. ^ a b Peng, Jing; Liu, Xinyao; Wang, Jie; Zhang, Shaoqing; Xiao, Xiao; Xiong, Zhengbin; Zhang, Kuibao; Chen, Baojun; He, Zhiyu; Huang, Wei (2023-07-31). "Crystal Growth, Characterization, and Properties of Nonlinear Optical Crystals of Li x Ag 1– x GaSe 2 for Mid-Infrared Applications". Inorganic Chemistry. 62 (30): 12067–12078. doi:10.1021/acs.inorgchem.3c01582. ISSN 0020-1669. PMID 37475677. S2CID 259995617.
  5. ^ a b c d Zhou, Jian; Zhang, Yong; Bian, Guo-Qing; Li, Chun-Yin; Chen, Xiao-Xia; Dai, Jie (2008-07-02). "Structural Study of Organic−Inorganic Hybrid Thiogallates and Selenidogallates in View of Effects of the Chelate Amines". Crystal Growth & Design. 8 (7): 2235–2240. doi:10.1021/cg700821n. ISSN 1528-7483.
  6. ^ a b c Zhou, Jian; Li, Chun-Ying; Zhang, Yong; Dai, Jie (2009-04-10). "Three 1-D selenidogallates [GaSe 2 − ] n , displaying conformational variations". Journal of Coordination Chemistry. 62 (7): 1112–1120. doi:10.1080/00958970802468617. ISSN 0095-8972. S2CID 96560482.
  7. ^ a b Xu, Chao; Zhang, Jing-Jing; Duan, Taike; Chen, Qun; Zhang, Qian-Feng (2011-09-01). "Solvothermal Syntheses and Crystal Structures of New One-dimensional Selenogallates [bappH 2 ][Ga 2 Se 4 ] (bapp = 1,4-Bis-(3-aminopropyl)piperazine) and [Mn(en) 3 ][Ga 2 Se 5 ] (en = Ethylenediamine)". Zeitschrift für Naturforschung B. 66 (9): 877–881. doi:10.1515/znb-2011-0902. ISSN 1865-7117. S2CID 51747460.
  8. ^ a b c d e Xiong, Wei-Wei; Li, Jian-Rong; Feng, Mei-Ling; Huang, Xiao-Ying (2011). "Solvothermal syntheses, crystal structures, and characterizations of a series of one-dimensional organic-containing gallium polyselenides". CrystEngComm. 13 (20): 6206. doi:10.1039/c1ce05507k. ISSN 1466-8033.
  9. ^ Fehlker, Andreas; Blachnik, Roger; Reuter, Hans (1999). "[Ga(en)3][Ga3Se7(en)] · H2O: Ein Galliumchalkogenid mit Ketten aus [Ga3Se6Se2/2(en)]3–-Bicyclen". Zeitschrift für anorganische und allgemeine Chemie (in German). 625 (7): 1225–1228. doi:10.1002/(SICI)1521-3749(199907)625:7<1225::AID-ZAAC1225>3.0.CO;2-H. ISSN 1521-3749.
  10. ^ a b Adhikary, Amit; Yaghoobnejad Asl, Hooman; Sandineni, Prashanth; Balijapelly, Srikanth; Mohapatra, Sudip; Khatua, Sajal; Konar, Sanjit; Gerasimchuk, Nikolay; Chernatynskiy, Aleksandr V.; Choudhury, Amitava (2020-07-14). "Unusual Atmospheric Water Trapping and Water Induced Reversible Restacking of 2D Gallium Sulfide Layers in NaGaS 2 Formed by Supertetrahedral Building Unit". Chemistry of Materials. 32 (13): 5589–5603. doi:10.1021/acs.chemmater.0c00836. ISSN 0897-4756. S2CID 225832882.
  11. ^ Xu, Qian-Ting; Han, Shan-Shan; Li, Jia-Nuo; Guo, Sheng-Ping (2022-04-11). "NaGa 3 Se 5 : An Infrared Nonlinear Optical Material with Balanced Performance Contributed by Complex {[Ga 3 Se 5 ] − } ∞ Anionic Network". Inorganic Chemistry. 61 (14): 5479–5483. doi:10.1021/acs.inorgchem.2c00623. ISSN 0020-1669. PMID 35344370. S2CID 247777531.
  12. ^ Feng, Kai; Mei, Dajiang; Bai, Lei; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng (August 2012). "Synthesis, structure, physical properties, and electronic structure of KGaSe2". Solid State Sciences. 14 (8): 1152–1156. Bibcode:2012SSSci..14.1152F. doi:10.1016/j.solidstatesciences.2012.05.028.
  13. ^ Zhou, Yazhou; Xing, Lingyi; Finkelstein, Gregory J.; Gui, Xin; Marshall, Madalynn G.; Dera, Przemyslaw; Jin, Rongying; Xie, Weiwei (2018-11-19). "Cr 2.37 Ga 3 Se 8 : A Quasi-Two-Dimensional Magnetic Semiconductor". Inorganic Chemistry. 57 (22): 14298–14303. doi:10.1021/acs.inorgchem.8b02384. ISSN 0020-1669. OSTI 1673400. PMID 30345756.
  14. ^ González, J.; Rico, R.; Calderón, E.; Quintero, M.; Morocoima, M. (1999). "Absorption Edge of MnGa2Se4 Single Crystals under Hydrostatic Pressure". Physica Status Solidi B. 211 (1): 45–49. Bibcode:1999PSSBR.211...45G. doi:10.1002/(SICI)1521-3951(199901)211:1<45::AID-PSSB45>3.0.CO;2-8. ISSN 1521-3951.
  15. ^ Abrahams, S. C.; Bernstein, J. L. (August 1974). "Piezoelectric nonlinear optic CuGaSe 2 and CdGeAs 2 : Crystal structure, chalcopyrite microhardness, and sublattice distortion". The Journal of Chemical Physics. 61 (3): 1140–1146. Bibcode:1974JChPh..61.1140A. doi:10.1063/1.1681987. ISSN 0021-9606.
  16. ^ a b Errandonea, D.; Kumar, Ravhi S.; Manjón, F. J.; Ursaki, V. V.; Tiginyanu, I. M. (2008-09-15). "High-pressure x-ray diffraction study on the structure and phase transitions of the defect-stannite ZnGa2Se4 and defect-chalcopyrite CdGa2S4". Journal of Applied Physics. 104 (6): 063524–063524–9. arXiv:0809.4620. Bibcode:2008JAP...104f3524E. doi:10.1063/1.2981089. ISSN 0021-8979. S2CID 56222977.
  17. ^ Chen, Ruijiao; Wu, Xiaowen; Su, Zhi (2018). "Structural insights into T 2 -cluster-containing chalcogenides with vertex-, edge- and face-sharing connection modes of NaQ 6 ligands: Na 3 ZnM III Q 4 (M III = In, Ga; Q = S, Se)". Dalton Transactions. 47 (43): 15538–15544. doi:10.1039/C8DT03281E. ISSN 1477-9226. PMID 30345442.
  18. ^ Abudurusuli, Ailijiang; Wu, Kui; Rouzhahong, Yilimiranmu; Yang, Zhihua; Pan, Shilie (2018). "Na 6 Zn 3 MIII2Q 9 (M III = Ga, In; Q = S, Se): four new supertetrahedron-layered chalcogenides with unprecedented vertex-sharing T 3 -clusters and desirable photoluminescence performances". Inorganic Chemistry Frontiers. 5 (6): 1415–1422. doi:10.1039/C8QI00182K. ISSN 2052-1553.
  19. ^ a b c Chen, Man-Man; Zhou, Sheng-Hua; Wei, Wenbo; Wu, Xin-Tao; Lin, Hua; Zhu, Qi-Long (2021-06-17). "AZn 4 Ga 5 Se 12 (A = K, Rb, or Cs): Infrared Nonlinear Optical Materials with Simultaneous Large Second Harmonic Generation Responses and High Laser-Induced Damage Thresholds". Inorganic Chemistry. 60 (13): 10038–10046. doi:10.1021/acs.inorgchem.1c01359. PMID 34134479. S2CID 235460337.
  20. ^ Yelisseyev, Alexander P.; Isaenko, Ludmila I.; Krinitsin, Pavel; Liang, Fei; Goloshumova, Alina A.; Naumov, Dmitry Yu.; Lin, Zheshuai (2016-09-06). "Crystal Growth, Structure, and Optical Properties of LiGaGe 2 Se 6". Inorganic Chemistry. 55 (17): 8672–8680. doi:10.1021/acs.inorgchem.6b01225. ISSN 0020-1669. PMID 27529433.
  21. ^ Mei, Dajiang; Yin, Wenlong; Feng, Kai; Lin, Zheshuai; Bai, Lei; Yao, Jiyong; Wu, Yicheng (2012-01-16). "LiGaGe 2 Se 6 : A New IR Nonlinear Optical Material with Low Melting Point". Inorganic Chemistry. 51 (2): 1035–1040. doi:10.1021/ic202202j. ISSN 0020-1669. PMID 22221169.
  22. ^ Isaenko, L.I.; Yelisseyev, A.P.; Lobanov, S.I.; Krinitsin, P.G.; Molokeev, M.S. (September 2015). "Structure and optical properties of Li2Ga2GeS6 nonlinear crystal". Optical Materials. 47: 413–419. Bibcode:2015OptMa..47..413I. doi:10.1016/j.optmat.2015.06.014.
  23. ^ Li, Xiaoshuang; Li, Chao; Gong, Pifu; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng (2016). "Syntheses, crystal structures and physical properties of three new chalcogenides: NaGaGe 3 Se 8 , K 3 Ga 3 Ge 7 S 20 , and K 3 Ga 3 Ge 7 Se 20". Dalton Transactions. 45 (2): 532–538. doi:10.1039/C5DT03682H. ISSN 1477-9226. PMID 26599138.
  24. ^ a b c d e f g h i Friedrich, Daniel; Byun, Hye Ryung; Hao, Shiqiang; Patel, Shane; Wolverton, Chris; Jang, Joon Ik; Kanatzidis, Mercouri G. (2020-10-14). "Layered and Cubic Semiconductors A Ga M ′ Q 4 ( A + = K + , Rb + , Cs + , Tl + ; M ′ 4+ = Ge 4+ , Sn 4+ ; Q 2– = S 2– , Se 2– ) and High Third-Harmonic Generation". Journal of the American Chemical Society. 142 (41): 17730–17742. doi:10.1021/jacs.0c08638. ISSN 0002-7863. PMID 32933252. S2CID 221748402.
  25. ^ a b c d Larsen, Jes K.; Donzel-Gargand, Olivier; Sopiha, Kostiantyn V.; Keller, Jan; Lindgren, Kristina; Platzer-Björkman, Charlotte; Edoff, Marika (2021-02-22). "Investigation of AgGaSe 2 as a Wide Gap Solar Cell Absorber". ACS Applied Energy Materials. 4 (2): 1805–1814. doi:10.1021/acsaem.0c02909. ISSN 2574-0962. S2CID 234068019.
  26. ^ Li, Jun; Li, Jia-Nuo; Hu, Li-Yun; Ni, Jun-Jie; Yao, Wen-Dong; Zhou, Wenfeng; Liu, Wenlong; Guo, Sheng-Ping (2024-03-22). "Polysubstitution Induced Centrosymmetric-to-Noncentrosymmetric Structural Transformation and Nonlinear-Optical Behavior: The Case of Na 0.45 Ag 0.55 Ga 3 Se 5". Inorganic Chemistry. 63 (14): 6116–6121. doi:10.1021/acs.inorgchem.4c00785. ISSN 0020-1669. PMID 38518373.
  27. ^ Li, Jia-Nuo; Yao, Wen-Dong; Li, Xiao-Hui; Liu, Wenlong; Xue, Huai-Guo; Guo, Sheng-Ping (2021). "A novel promising infrared nonlinear optical selenide KAg 3 Ga 8 Se 14 designed from benchmark AgGaQ 2 (Q = S, Se)". Chemical Communications. 57 (9): 1109–1112. doi:10.1039/D0CC07396B. ISSN 1359-7345. PMID 33410852. S2CID 230546711.
  28. ^ Ni, Youbao; Hu, Qianqian; Wu, Haixin; Han, Weimin; Yu, Xuezhou; Mao, Mingsheng (2021-06-10). "The Investigation on Mid-Far Infrared Nonlinear Crystal AgGaGe5Se12 (AGGSe)". Crystals. 11 (6): 661. doi:10.3390/cryst11060661. ISSN 2073-4352.
  29. ^ Kim, Chang-Dae; Cho, Tong-San; Kim, Jae-Kuen; Kim, Wha-Tek; Park, Hong-Lee (1987-12-15). "Spin-orbit coupling effects in CdGa 2 Se 4 : Co 2 + single crystals". Physical Review B. 36 (17): 9283–9285. Bibcode:1987PhRvB..36.9283K. doi:10.1103/PhysRevB.36.9283. ISSN 0163-1829. PMID 9942799.
  30. ^ a b c Grzechnik, A.; Ursaki, V.V.; Syassen, K.; Loa, I.; Tiginyanu, I.M.; Hanfland, M. (August 2001). "Pressure-Induced Phase Transitions in Cadmium Thiogallate CdGa2Se4". Journal of Solid State Chemistry. 160 (1): 205–211. Bibcode:2001JSSCh.160..205G. doi:10.1006/jssc.2001.9224.
  31. ^ a b c Lin, Hua; Chen, Ling; Zhou, Liu-Jiang; Wu, Li-Ming (2013-08-28). "Functionalization Based on the Substitutional Flexibility: Strong Middle IR Nonlinear Optical Selenides AX II 4 X III 5 Se 12". Journal of the American Chemical Society. 135 (34): 12914–12921. doi:10.1021/ja4074084. ISSN 0002-7863. PMID 23902474.
  32. ^ a b c d e f g h i j k l m n Abudurusuli, Ailijiang; Li, Junjie; Tong, Tinghao; Yang, Zhihua; Pan, Shilie (2020-04-20). "LiBa 4 Ga 5 Q 12 (Q = S, Se): Noncentrosymmetric Metal Chalcogenides with a Cesium Chloride Topological Structure Displaying a Remarkable Laser Damage Threshold". Inorganic Chemistry. 59 (8): 5674–5682. doi:10.1021/acs.inorgchem.0c00431. ISSN 0020-1669. PMID 32248682. S2CID 214811024.
  33. ^ Deiseroth, H.-J.; Müller, D.; Hahn, H. (June 1985). "Strukturuntersuchungen an InGaSe2 und InGaTe2". Zeitschrift für anorganische und allgemeine Chemie (in German). 525 (6): 163–172. doi:10.1002/zaac.19855250619. ISSN 0044-2313.
  34. ^ Luo, Zhong-Zhen; Lin, Chen-Sheng; Cui, Hong-Hua; Zhang, Wei-Long; Zhang, Hao; He, Zhang-Zhen; Cheng, Wen-Dan (2014-04-22). "SHG Materials SnGa 4 Q 7 (Q = S, Se) Appearing with Large Conversion Efficiencies, High Damage Thresholds, and Wide Transparencies in the Mid-Infrared Region". Chemistry of Materials. 26 (8): 2743–2749. doi:10.1021/cm5006955. ISSN 0897-4756.
  35. ^ Lin, Hua; Chen, Hong; Zheng, Yu-Jun; Yu, Ju-Song; Wu, Xin-Tao; Wu, Li-Ming (2017). "Two excellent phase-matchable infrared nonlinear optical materials based on 3D diamond-like frameworks: RbGaSn 2 Se 6 and RbInSn 2 Se 6". Dalton Transactions. 46 (24): 7714–7721. doi:10.1039/C7DT01384A. ISSN 1477-9226. PMID 28537606.
  36. ^ a b Friedrich, Daniel; Schlosser, Marc; Pfitzner, Arno (2016-07-06). "Synthesis, Crystal Structure, and Physical Properties of Two Polymorphs of CsGaSe 2 , and High-Temperature X-ray Diffraction Study of the Phase Transition Kinetics". Crystal Growth & Design. 16 (7): 3983–3992. doi:10.1021/acs.cgd.6b00532. ISSN 1528-7483.
  37. ^ Do, Junghwan; Kanatzidis, Mercouri G. (April 2003). "The One-dimensional Polyselenide Compound CsGaSe3". Zeitschrift für anorganische und allgemeine Chemie (in German). 629 (4): 621–624. doi:10.1002/zaac.200390105. ISSN 0044-2313.
  38. ^ Friedrich, Daniel; Schlosser, Marc; Pfitzner, Arno (April 2014). "Synthesis and Structural Characterization of Cs 2 Ga 2 Se 5: Synthesis and Structural Characterization of Cs 2 Ga 2 Se 5" (PDF). Zeitschrift für anorganische und allgemeine Chemie. 640 (5): 826–829. doi:10.1002/zaac.201400046.
  39. ^ Friedrich, Daniel; Greim, Dominik; Schlosser, Marc; Siegel, Renée; Senker, Jürgen; Pfitzner, Arno (2018-12-03). "Synthese und Charakterisierung von Cs 4 Ga 6 Q 11 ( Q =S, Se) – Chalkogenogallate mit außergewöhnlichen polymeren Anionen". Angewandte Chemie. 130 (49): 16442–16447. Bibcode:2018AngCh.13016442F. doi:10.1002/ange.201805239. ISSN 0044-8249. S2CID 105570704.
  40. ^ Deiseroth, Hans-Jörg; Fu-Son, Han (1983-02-01). "Cs 6 Ga 2 Se 6 , ein ternäres Selenogallat(III) mit isolierten [Ga 2 Se 6 ] 6- -Ionen/Cs 6 Ga 2 Se 6 , a Ternary Selenogallate(III) with Isolated [Ga 2 Se 6 ] 6- Ions". Zeitschrift für Naturforschung B. 38 (2): 181–182. doi:10.1515/znb-1983-0212. ISSN 1865-7117. S2CID 96891752.
  41. ^ a b Deiseroth, H. J. (1984-08-01). "Ungewöhnliche lineare, oligomere Anionen [Ga n Se 2n+2 ] (n + 4) - (n =2,4,6) in festen Selenogallaten des Cäsiums". Zeitschrift für Kristallographie - Crystalline Materials. 166 (1–4): 283–296. doi:10.1524/zkri.1984.166.14.283. ISSN 2196-7105. S2CID 93996138.
  42. ^ Lin, Hua; Chen, Hong; Lin, Zi-Xiong; Zhao, Hua-Jun; Liu, Peng-Fei; Yu, Ju-Song; Chen, Ling (February 2016). "(Cs 6 Cl) 6 Cs 3 [Ga 53 Se 96 ]: A Unique Long Period-Stacking Structure of Layers Made from Ga 2 Se 6 Dimers via Cis or Trans Intralayer Linking". Inorganic Chemistry. 55 (3): 1014–1016. doi:10.1021/acs.inorgchem.5b02846. ISSN 0020-1669. PMID 26792549.
  43. ^ Ma, Ni; Xiong, Lin; Chen, Ling; Wu, Li-Ming (December 2019). "Vibration uncoupling of germanium with different valence states lowers thermal conductivity of Cs2Ge3Ga6Se14". Science China Materials. 62 (12): 1788–1797. doi:10.1007/s40843-019-1192-y. ISSN 2095-8226. S2CID 204962439.
  44. ^ Mei, Dajiang; Yin, Wenlong; Feng, Kai; Bai, Lei; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng (February 2012). "Synthesis, structure, and electronic structure of CsAgGa2Se4". Journal of Solid State Chemistry. 186: 54–57. Bibcode:2012JSSCh.186...54M. doi:10.1016/j.jssc.2011.11.014.
  45. ^ Zhai, Naixia; Li, Chao; Xu, Bo; Bai, Lei; Yao, Jiyong; Zhang, Guochun; Hu, Zhanggui; Wu, Yicheng (2017-02-23). "Temperature-Dependent Sellmeier Equations of IR Nonlinear Optical Crystal BaGa4Se7". Crystals. 7 (3): 62. doi:10.3390/cryst7030062. ISSN 2073-4352.
  46. ^ Yao, Jiyong; Mei, Dajiang; Bai, Lei; Lin, Zheshuai; Yin, Wenlong; Fu, Peizhen; Wu, Yicheng (2010-10-18). "BaGa 4 Se 7 : A New Congruent-Melting IR Nonlinear Optical Material". Inorganic Chemistry. 49 (20): 9212–9216. doi:10.1021/ic1006742. ISSN 0020-1669. PMID 20863100.
  47. ^ a b c d e f g h i Iyer, Abishek K (2018). "Structural diversity and optical properties of ternary and quaternary chalcogenides". doi:10.7939/R33N20W55. {{cite journal}}: Cite journal requires |journal= (help)
  48. ^ Yin, Wenlong; Iyer, Abishek K.; Lin, Xinsong; Mar, Arthur (May 2016). "Ba4Ga2Se8: A ternary selenide containing chains and discrete S e 2 2 − units". Journal of Solid State Chemistry. 237: 144–149. Bibcode:2016JSSCh.237..144Y. doi:10.1016/j.jssc.2016.02.014.
  49. ^ Mei, Dajiang; Yin, Wenlong; Lin, Zheshuai; He, Ran; Yao, Jiyong; Fu, Peizhen; Wu, Yicheng (February 2011). "Syntheses and characterization of two new selenides Ba5Al2Se8 and Ba5Ga2Se8". Journal of Alloys and Compounds. 509 (6): 2981–2985. doi:10.1016/j.jallcom.2010.11.178.
  50. ^ Yin, Wenlong; Mei, Dajiang; Feng, Kai; Yao, Jiyong; Fu, Peizhen; Wu, Yicheng (2011). "Ba5Ga4Se10: a new selenidogallate containing the novel [Ga4Se10]10− anionic cluster with Ga in a mixed-valence state". Dalton Transactions. 40 (36): 9159–9162. doi:10.1039/c1dt10748h. ISSN 1477-9226. PMID 21822514.
  51. ^ Feng, Kai; Yin, Wenlong; Lin, Zuohong; Yao, Jiyong; Wu, Yicheng (2013-10-07). "Five New Chalcohalides, Ba 3 GaS 4 X (X = Cl, Br), Ba 3 MSe 4 Cl (M = Ga, In), and Ba 7 In 2 Se 6 F 8 : Syntheses, Crystal Structures, and Optical Properties". Inorganic Chemistry. 52 (19): 11503–11508. doi:10.1021/ic401820a. ISSN 0020-1669. PMID 24024885.
  52. ^ Yin, Wenlong; Iyer, Abishek K.; Xing, Wenhao; Kang, Bin; Mar, Arthur (April 2020). "Quaternary chalcogenide halides Ba3GaSe4Br and Ba3InSe4Br". Journal of Solid State Chemistry. 284: 121189. Bibcode:2020JSSCh.28421189Y. doi:10.1016/j.jssc.2020.121189. S2CID 213719661.
  53. ^ a b Yin, Wenlong; Feng, Kai; Mei, Dajiang; Yao, Jiyong; Fu, Peizhen; Wu, Yicheng (2012). "Ba2AgInS4 and Ba4MGa5Se12 (M = Ag, Li): syntheses, structures, and optical properties". Dalton Transactions. 41 (8): 2272–2276. doi:10.1039/c2dt11895e. ISSN 1477-9226. PMID 22214992.
  54. ^ Abudurusuli, Ailijiang; Wu, Kui; Rouzhahong, Yilimiranmu; Yang, Zhihua; Pan, Shilie (2018). "NaBaM III Q 3 (M III = Al, Ga; Q = S, Se): first quaternary chalcogenides with isolated edge-sharing (MIII2Q 6 ) 6− dimers". Dalton Transactions. 47 (45): 16044–16047. doi:10.1039/C8DT04048F. ISSN 1477-9226. PMID 30393800.
  55. ^ Li, Ya-Nan; Xue, Huaiguo; Guo, Sheng-Ping (2020-03-16). "(Na 0.60 Ba 0.70 )Ga 2 Se 4 : An Infrared Nonlinear Optical Crystal Designed using AgGaSe 2 as the Template". Inorganic Chemistry. 59 (6): 3546–3550. doi:10.1021/acs.inorgchem.0c00196. ISSN 0020-1669. PMID 32125150. S2CID 211833495.
  56. ^ a b c Yu, Peng; Zhou, Liu-Jiang; Chen, Ling (February 2012). "Noncentrosymmetric Inorganic Open-Framework Chalcohalides with Strong Middle IR SHG and Red Emission: Ba 3 AGa 5 Se 10 Cl 2 (A = Cs, Rb, K)". Journal of the American Chemical Society. 134 (4): 2227–2235. doi:10.1021/ja209711x. ISSN 0002-7863. PMID 22239154.
  57. ^ a b c d e f Li, Yan-Yan; Liu, Peng-Fei; Hu, Lei; Chen, Ling; Lin, Hua; Zhou, Liu-Jiang; Wu, Li-Ming (July 2015). "Strong IR NLO Material Ba 4 MGa 4 Se 10 Cl 2 : Highly Improved Laser Damage Threshold via Dual Ion Substitution Synergy". Advanced Optical Materials. 3 (7): 957–966. doi:10.1002/adom.201500038. S2CID 94065731.
  58. ^ Kuo, Shu-Ming; Chang, Yu-Ming; Chung, In; Jang, Joon-Ik; Her, Bo-Hsian; Yang, Siao-Han; Ketterson, John B.; Kanatzidis, Mercouri G.; Hsu, Kuei-Fang (2013-06-25). "New Metal Chalcogenides Ba 4 CuGa 5 Q 12 (Q = S, Se) Displaying Strong Infrared Nonlinear Optical Response". Chemistry of Materials. 25 (12): 2427–2433. doi:10.1021/cm400311v. ISSN 0897-4756.
  59. ^ Li, Yan-Yan; Wang, Hui; Sun, Bo-Wen; Ruan, Qin-Qin; Geng, Yan-Ling; Liu, Peng-Fei; Wang, Lei; Wu, Li-Ming (2019-02-06). "Ba 10 Zn 7 M 6 Q 26 : Two New Mid-infrared Nonlinear Optical Crystals with T2 Supertetrahedron 3D Framework". Crystal Growth & Design. 19 (2): 1190–1197. doi:10.1021/acs.cgd.8b01644. ISSN 1528-7483. S2CID 104303095.
  60. ^ Yin, Wenlong; Iyer, Abishek K.; Li, Chao; Lin, Xinsong; Yao, Jiyong; Mar, Arthur (September 2016). "Noncentrosymmetric selenide Ba4Ga4GeSe12: Synthesis, structure, and optical properties". Journal of Solid State Chemistry. 241: 131–136. Bibcode:2016JSSCh.241..131Y. doi:10.1016/j.jssc.2016.06.004.
  61. ^ a b Badikov, Valeriy V.; Badikov, Dmitrii V.; Wang, Li; Shevyrdyaeva, Galina S.; Panyutin, Vladimir L.; Fintisova, Anna A.; Sheina, Svetlana G.; Petrov, Valentin (2019-08-07). "Crystal Growth and Characterization of a New Quaternary Chalcogenide Nonlinear Crystal for the Mid-Infrared: PbGa 2 GeSe 6". Crystal Growth & Design. 19 (8): 4224–4228. doi:10.1021/acs.cgd.9b00118. ISSN 1528-7483. S2CID 198354895.
  62. ^ a b c d e f Yin, Wenlong; Feng, Kai; Wang, Wendong; Shi, Youguo; Hao, Wenyu; Yao, Jiyong; Wu, Yicheng (2012-06-18). "Syntheses, Structures, Optical and Magnetic Properties of Ba 2 M Ln Se 5 (M = Ga, In; Ln = Y, Nd, Sm, Gd, Dy, Er)". Inorganic Chemistry. 51 (12): 6860–6867. doi:10.1021/ic300604a. ISSN 0020-1669. PMID 22671989.
  63. ^ Lei, Xiao-Wu; Yang, Min; Xia, Sheng-Qing; Liu, Xiao-Cun; Pan, Ming-Yan; Li, Xin; Tao, Xu-Tang (April 2014). "Synthesis, Structure and Bonding, Optical Properties of Ba 4 MTrQ 6 (M=Cu, Ag; Tr=Ga, In; Q=S, Se)". Chemistry: An Asian Journal. 9 (4): 1123–1131. doi:10.1002/asia.201301495. PMID 24519897.
  64. ^ Yin, Wenlong; He, Ran; Feng, Kai; Hao, Wenyu; Yao, Jiyong; Wu, Yicheng (July 2013). "Synthesis, structure, optical property, and electronic structure of Ba7AgGa5Se15". Journal of Alloys and Compounds. 565: 115–119. doi:10.1016/j.jallcom.2013.02.180.
  65. ^ Yin, Wenlong; Iyer, Abishek K.; Li, Chao; Yao, Jiyong; Mar, Arthur (2017). "Ba 5 CdGa 6 Se 15 , a congruently-melting infrared nonlinear optical material with strong SHG response". Journal of Materials Chemistry C. 5 (5): 1057–1063. doi:10.1039/C6TC05111A. ISSN 2050-7526.
  66. ^ Li, Xiaoshuang; Li, Chao; Gong, Pifu; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng (2015). "BaGa 2 SnSe 6 : a new phase-matchable IR nonlinear optical material with strong second harmonic generation response". Journal of Materials Chemistry C. 3 (42): 10998–11004. doi:10.1039/C5TC02337H. ISSN 2050-7526.
  67. ^ a b Yin, Wenlong; Lin, Zuohong; Kang, Lei; Kang, Bin; Deng, Jianguo; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng (2015). "Syntheses, structures, and optical properties of Ba 4 Ga 4 SnSe 12 and Ba 6 Ga 2 SnSe 11". Dalton Transactions. 44 (5): 2259–2266. doi:10.1039/C4DT02244K. ISSN 1477-9226. PMID 25523931.
  68. ^ Li, Chao; Li, Xiaoshuang; Huang, Hongwei; Yao, Jiyong; Wu, Yicheng (2015-10-19). "Ba 2 AsGaSe 5 : A New Quaternary Selenide with the Novel [AsGaSe 5 ] 4– Cluster and Interesting Photocatalytic Properties". Inorganic Chemistry. 54 (20): 9785–9789. doi:10.1021/acs.inorgchem.5b01501. ISSN 0020-1669. PMID 26418301.
  69. ^ a b c Choudhury, Amitava; Dorhout, Peter K. (2008-05-01). "Synthesis, Structure, and Optical Properties of the Quaternary Seleno-gallates Na Ln Ga 4 Se 8 ( Ln = La, Ce, Nd) and Their Comparison with the Isostructural Thio-gallates". Inorganic Chemistry. 47 (9): 3603–3609. doi:10.1021/ic701986j. ISSN 0020-1669. PMID 18345598.
  70. ^ He, Jianqiao; Wang, Zhe; Zhang, Xian; Cheng, Ye; Gong, Yu; Lai, Xiaofang; Zheng, Chong; Lin, Jianhua; Huang, Fuqiang (2015). "Synthesis, structure, magnetic and photoelectric properties of Ln 3 M 0.5 M′Se 7 (Ln = La, Ce, Sm; M = Fe, Mn; M′ = Si, Ge) and La 3 MnGaSe 7". RSC Advances. 5 (65): 52629–52635. Bibcode:2015RSCAd...552629H. doi:10.1039/C5RA05629B. ISSN 2046-2069.
  71. ^ a b c d e Rudyk, Brent W.; Stoyko, Stanislav S.; Oliynyk, Anton O.; Mar, Arthur (February 2014). "Rare-earth transition-metal gallium chalcogenides RE3MGaCh7 (M=Fe, Co, Ni; Ch=S, Se)". Journal of Solid State Chemistry. 210 (1): 79–88. Bibcode:2014JSSCh.210...79R. doi:10.1016/j.jssc.2013.11.003.
  72. ^ Iyer, Abishek K.; Yin, Wenlong; Rudyk, Brent W.; Lin, Xinsong; Nilges, Tom; Mar, Arthur (November 2016). "Metal ion displacements in noncentrosymmetric chalcogenides La3Ga1.67S7, La3Ag0.6GaCh7 (Ch=S, Se), and La3MGaSe7 (M=Zn, Cd)". Journal of Solid State Chemistry. 243: 221–231. Bibcode:2016JSSCh.243..221I. doi:10.1016/j.jssc.2016.08.031.
  73. ^ a b c d e f g Yin, Wenlong; Zhang, Dong; Zhou, Molin; Iyer, Abishek K.; Pöhls, Jan-Hendrik; Yao, Jiyong; Mar, Arthur (September 2018). "Quaternary rare-earth selenides Ba2REGaSe5 and Ba2REInSe5". Journal of Solid State Chemistry. 265: 167–175. Bibcode:2018JSSCh.265..167Y. doi:10.1016/j.jssc.2018.05.041. S2CID 103520080.
  74. ^ a b c Yin, Wenlong; Wang, Wendong; Kang, Lei; Lin, Zheshuai; Feng, Kai; Shi, Youguo; Hao, Wenyu; Yao, Jiyong; Wu, Yicheng (June 2013). "Ln3FeGaQ7: A new series of transition-metal rare-earth chalcogenides". Journal of Solid State Chemistry. 202: 269–275. Bibcode:2013JSSCh.202..269Y. doi:10.1016/j.jssc.2013.03.029.
  75. ^ Alieva, O. A.; Aliev, O. M.; Rustamov, P. G. (1987). "SmSe-Ga2Se3 system". Zhurnal Neorganicheskoj Khimii (in Russian). 32 (1): 252–254. ISSN 0044-457X.
  76. ^ Gomis, O.; Vilaplana, R.; Manjón, F. J.; Santamaría-Pérez, D.; Errandonea, D.; Pérez-González, E.; López-Solano, J.; Rodríguez-Hernández, P.; Muñoz, A.; Tiginyanu, I. M.; Ursaki, V. V. (2013-02-21). "High-pressure study of the structural and elastic properties of defect-chalcopyrite HgGa 2 Se 4". Journal of Applied Physics. 113 (7): 073510–073510–10. Bibcode:2013JAP...113g3510G. doi:10.1063/1.4792495. hdl:10251/35871. ISSN 0021-8979.
  77. ^ Zhou, Molin; Yang, Yi; Guo, Yangwu; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng; Chen, Chuangtian (2017-09-26). "Hg-Based Infrared Nonlinear Optical Material KHg 4 Ga 5 Se 12 Exhibits Good Phase-Matchability and Exceptional Second Harmonic Generation Response". Chemistry of Materials. 29 (18): 7993–8002. doi:10.1021/acs.chemmater.7b03143. ISSN 0897-4756.
  78. ^ Johnsen, Simon; Liu, Zhifu; Peters, John A.; Song, Jung-Hwan; Peter, Sebastian C.; Malliakas, Christos D.; Cho, Nam Ki; Jin, Hosub; Freeman, Arthur J.; Wessels, Bruce W.; Kanatzidis, Mercouri G. (2011-06-28). "Thallium Chalcogenide-Based Wide-Band-Gap Semiconductors: TlGaSe 2 for Radiation Detectors". Chemistry of Materials. 23 (12): 3120–3128. doi:10.1021/cm200946y. ISSN 0897-4756.
  79. ^ Makhnovets, G.; Myronchuk, G.; Piskach, L.; Parasyuk, O.; Kityk, I.V.; Piasecki, M. (November 2018). "Phase diagram and specific band gap features of novel TlGaSe2: Zn+2(Cd+2, Hg+2) crystals". Journal of Alloys and Compounds. 768: 667–675. doi:10.1016/j.jallcom.2018.07.282. S2CID 105481044.
  80. ^ a b Babizhetskyy, Volodymyr; Levytskyy, Volodymyr; Smetana, Volodymyr; Wilk-Kozubek, Magdalena; Tsisar, Oksana; Piskach, Lyudmyla; Parasyuk, Oleg; Mudring, Anja-Verena (2020-02-25). "New cation-disordered quaternary selenides Tl 2 Ga 2 Tt Se 6 ( Tt =Ge, Sn)". Zeitschrift für Naturforschung B. 75 (1–2): 135–142. doi:10.1515/znb-2019-0169. ISSN 1865-7117. S2CID 211229264.
  81. ^ Parasyuk, Oleh; Babizhetskyy, Volodymyr; Khyzhun, Oleg; Levytskyy, Volodymyr; Kityk, Iwan; Myronchuk, Galyna; Tsisar, Oksana; Piskach, Lyudmyla; Jedryka, Jaroslaw; Maciag, Artur; Piasecki, Michal (2017-11-07). "Novel Quaternary TlGaSn2Se6 Single Crystal as Promising Material for Laser Operated Infrared Nonlinear Optical Modulators". Crystals. 7 (11): 341. doi:10.3390/cryst7110341. ISSN 2073-4352.
  82. ^ Bletskan, D. I.; Frolov, V. V.; Kabatsii, V. M.; Kranichets, M.; Gule, E. G. (2006). "Photoconductivity and photoluminescence of PbGa2Se4crystals" (PDF). Chalcogenide Letters. 3 (12). ISSN 1584-8663.
  83. ^ Wu, Kui; Pan, Shilie; Wu, Hongping; Yang, Zhihua (February 2015). "Synthesis, structures, optical properties and electronic structures of PbGa2Q4 (Q=S, Se) crystals". Journal of Molecular Structure. 1082: 174–179. Bibcode:2015JMoSt1082..174W. doi:10.1016/j.molstruc.2014.11.019.
  84. ^ Zhou, Molin; Jiang, Xingxing; Guo, Yangwu; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng (2017-07-17). "Pb 0.65 Mn 2.85 Ga 3 S 8 and Pb 0.72 Mn 2.84 Ga 2.95 Se 8 : Two Quaternary Metal Chalcognides with Open-Tunnel-Framework Structures Displaying Intense Second Harmonic Generation Responses and Interesting Magnetic Properties". Inorganic Chemistry. 56 (14): 8454–8461. doi:10.1021/acs.inorgchem.7b01157. ISSN 0020-1669. PMID 28644026.
  85. ^ Chen, Yu-Kun; Chen, Mei-Chun; Zhou, Liu-Jiang; Chen, Ling; Wu, Li-Ming (2013-08-05). "Syntheses, Structures, and Nonlinear Optical Properties of Quaternary Chalcogenides: Pb 4 Ga 4 GeQ 12 (Q = S, Se)". Inorganic Chemistry. 52 (15): 8334–8341. doi:10.1021/ic400995z. ISSN 0020-1669. PMID 23848994.
  86. ^ Wu, Xiaowen; Gu, Xiaofeng; Pan, Hui; Hu, Yi; Wu, Kui (2018-04-13). "Synthesis, Crystal Structures, Optical Properties and Theoretical Calculations of Two Metal Chalcogenides Ba2AlSbS5 and Ba2GaBiSe5". Crystals. 8 (4): 165. doi:10.3390/cryst8040165. ISSN 2073-4352.