S100A1

S100A1
Dostupne strukture
PDBPretraga ortologa: PDBe RCSB
Spisak PDB ID kodova

2L0P, 2LHL, 2LLS, 2LLT, 2LLU, 2LP2, 2LP3, 2LUX, 2M3W

Identifikatori
AliasiS100A1
Vanjski ID-jeviOMIM: 176940 MGI: 1338917 HomoloGene: 4566 GeneCards: S100A1
Lokacija gena (čovjek)
Hromosom 1 (čovjek)
Hrom.Hromosom 1 (čovjek)[1]
Hromosom 1 (čovjek)
Genomska lokacija za S100A1
Genomska lokacija za S100A1
Bend1q21.3Početak153,627,926 bp[1]
Kraj153,632,039 bp[1]
Lokacija gena (miš)
Hromosom 3 (miš)
Hrom.Hromosom 3 (miš)[2]
Hromosom 3 (miš)
Genomska lokacija za S100A1
Genomska lokacija za S100A1
Bend3 F1|3 39.24 cMPočetak90,418,341 bp[2]
Kraj90,421,699 bp[2]
Obrazac RNK ekspresije
Više referentnih podataka o ekspresiji
Ontologija gena
Molekularna funkcija calcium ion binding
S100 protein binding
protein homodimerization activity
ATPase binding
calcium-dependent protein binding
vezivanje iona metala
GO:0001948, GO:0016582 vezivanje za proteine
vezivanje identičnih proteina
Ćelijska komponenta citoplazma
M band
I band
Sarkoplazmatski retikulum
Z discdkac
neuron projection
A band
jedro
extracellular region
GO:0009327 makromolekulani kompleks
Biološki proces GO:0007243 intracellular signal transduction
regulation of heart contraction
substantia nigra development
positive regulation of voltage-gated calcium channel activity
GO:1901227 negative regulation of transcription by RNA polymerase II
toll-like receptor signaling pathway
positive regulation of nitric-oxide synthase activity
positive regulation of sprouting angiogenesis
Izvori:Amigo / QuickGO
Ortolozi
VrsteČovjekMiš
Entrez
Ensembl
UniProt
RefSeq (mRNK)

NM_006271

NM_011309

RefSeq (bjelančevina)

NP_006262

NP_035439

Lokacija (UCSC)Chr 1: 153.63 – 153.63 MbChr 3: 90.42 – 90.42 Mb
PubMed pretraga[3][4]
Wikipodaci
Pogledaj/uredi – čovjekPogledaj/uredi – miš

S100A1, znan i kao S100 kalcij-vezujući protein A1 jest protein koji je kod ljudi kodiran genom S100A1 sa hromosoma 1.[5][6] S100A1 je visoko eksprimiran u srčanom i skeletnim mišićima, a nalazi sena Z-diskovima i sarkoplazmatskom retikulumu. S100A1 je obećavajući kao efikasan kandidat za gensku terapiju za liječenje srčanog tkiva nakon infarkta miokarda.

Aminokiselinska sekvenca

[uredi | uredi izvor]

Dužina polipeptidnog lanca je 94 aminokiseline, a molekulska težina 10.546 Da.[7]

1020304050
MGSELETAMETLINVFHAHSGKEGDKYKLSKKELKELLQTELSGFLDAQK
DVDAVDKVMKELDENGDGEVDFQEYVVLVAALTVACNNFFWENS

Struktura

[uredi | uredi izvor]

S100A1 je član porodice S100 proteina, eksprimiranih u srčanom mi i skeletnim mišićima i mozgu,[8] sa najvećom gustoćom na Z-linijama i sarkoplazmatskom retikulumu.[9] S100A1 sadrži 4 F-šakin kalcij-vezujući motiv u svom dimeriziranom obliku,[10] a može postojati ili kao hetero- ili kao homodimer. Homodimer S100A1 je visokog afiniteta (nanomolarni raspon ili manji), a formira se kroz hidrofobno pakovanje snopa X-tipa od četiri spirale, stvorenog između heliksa 1, 1', 4 i 4'. Proteinska nuklearna magnetna rezonantna spektroskopija pokazuje strukturne informacije o homodimernom obliku ovog proteina, gdje je svaki monomer spiralan i da sadrži dvije EF-šakine petlje za vezanje kalcija; jedan na N-terminalu i kanonska EF-šaka u C-terminalu, koji ima veći afinitet za kalcij (konstanta disocijacije od otprilike 20 mikromolara). Dva domena EF-šaka sususjedna su u trodimenzijskom prostoru i međusobno povezana kratkom regijom beta-listova(ostaci 27–29 i 68–70).

Nakon vezivanja kalcija, heliks 3 S100A1 se preorijentiše od relativno antiparalelnog prema heliksu 4 da bude otprilike okomit. Ova konformaciona promena razlikuje se od većine EF- šaka, po tome što se kreće spirala koja ulazi, a ne izlazi. Ova konformaciona promena otkriva veliki hidrofobni džep između heliksa 3, 4 i zglobnog regiona S100A1, koji je uključen u gotovo sve kalcij-ovisne interakcije ciljnog proteina. Čini se da su ova biofizička svojstva dobro konzervirana u porodici proteina S100. Heliksi 3, 4 i zglobni region su područja sa najdivergentnijima između pojedinačnih S100 proteina, pa je vjerovatno da je sekvenca ovih regiona ključna u finom podešavanju vezivanja ovisnog od kalcija, putem S100 proteina.[11] S-Nitrozilacija S100A1 na Cys85 reorganizira konformaciju S100A1 na C-terminalnom heliksu i linker koji povezuje dva domena EF-šaka.[12]

Najpreciznija struktura rastvora visoke rezolucije ljudskog apo-S100A1 proteina (PDB pristupni kod: 2L0P) određena je pomoću NMR spektroskopije u 2011.[13]

Geni S100 uključuju najmanje 19 članova koji su locirani kao klaster na hromosomskoj regiji 1q21.[14][15]

Funkcija

[uredi | uredi izvor]

S100 proteini su lokalizovani u citoplazmi i/ili jedru širokog spektra ćelija i uključeni su u regulaciju brojnih ćelijskih procesa kao što su progresija ćelijskog ciklusa i diferencijacija. Ovaj protein može funkcionirati u stimulaciji Ca2+-indukovanog oslobađanja Ca2+, inhibiciji sklapanja mikrotubula i inhibiciji protein-kinaza C-posredovanih fosforilacija.

S100A1 se eksprimira tokom razvoja u primitivnom srcu 8. embrionskog dana, na nivoima koji su slični između pretkomore i komora. Kako razvoj napreduje do embrionskog dana 17.5, ekspresija S100A1 se pomjera na niže nivoe u predkomorama i više u komorama miokarda.[16]

S100A1 pokazao se kao regulator kontraktilnosti miokarda. Prekomjerna ekspresija S100A1 preko adenovirusnog prijenosa gena kod kardiomiocita odraslih kunića ili kod mišjeg transgenog S100A1 ograničenog na rad srca, poboljšava srčanu kontraktilnost, povećanjem prolaznih procesa i unosa kalcija u sarkoplazmatski retikulum, menjajući osjetljivost na kalcij i kooperativnost miofibrila, pojačavajući aktivnost SERCA2A i pojačavajući kalcij-inducirano oslobađanje kalcija.[17][18][19] Konkretno, S100A1 povećava pojačanje sprege nadražaj-kontrakcija[20] i smanjuje frekvenciju kalcijevih podražaja[21] u kardiomiocitima. Pokazalo se da povećanje priliva L-tipa kalcijskog kanala transsarkolemnog kalcija putem S100A ovisi od protein-kinaza A.[22] Efekti S100A1 na proteine miofilamenta mogu biti preko titina; pokazalo se da S100A1 stupa u interakciju s PEVK regijom titina na kalcij- ovisan način, a njegovo vezivanje smanjuje silu u in vitro testu pokretljivosti, sugerirajući da S100A može modulirati titin-pasivnu tenziju prije sistola.[23][24] Kod miševa sa ablacijom gena S100A1 (S100A1 –/–), srčana rezerva nakon beta adrenalinske stimulacije bila je poremećena, pokazujući smanjenu brzinu kontrakcije i brzinu opuštanja, kao i smanjenu osjetljivostna kalcij. Međutim, S100A1–/– nije pokazao eventualnu srčanu hipertrofiju ili proširenje komore kod starijih miševa.[25]

U životinjskim modelima bolesti, pokazalo se da su nivoi proteina S100A1 promijenjeni u desnoj komori, hipertrofirano u tkivu u modelu plućne hipertenzije;[26] nekoliko tipova tkiva (mozak, skeletni mišić i srčani mišić) u modelu tip I dijabetes melitus;[27] S100A1 je demonstriran kao regulator genetičkog programa koji leži u osnovi hipertrofije srca, jer S100A1 inhibira alfa1 adrenalinsku stimulaciju hipertrofijskih gena, uključujući MYH7 , ACTA1 i S100B.[28] U pacovskom modelu infarkta miokarda, intrakoronski prijenos gena S100A1 adenovirusom obnovio je kalcijske prolazne procese i opterećenja sarkoplazmatskog retikuluma, normalizirjuču unutarćelijske koncentracije natrija, a poništio je patološku ekspresiju fetusog genskog programa, obnovio opskrbu energijom, normalizirao kontraktilnu funkciju, sačuvao inotropnu rezervu i smanjio hipertrofiju srca sedmicu nakon infarkta miokarda.[29][30] U prilog eksperimentima adenovirusne, transgeneze kod miševa s prekomjernom ekspresijom S100A1 podvrgnutih infarktu miokarda pokazali su očuvanu kontraktilnu funkciju, poništenu apoptozu, očuvan kalcijski ciklus u sarkoplazmatskom retikulumu i beta adrennalinsku signalizaciju, prevenciju hipertrofije srca i srčane insuficijencije, kao i produženo preživljavanje u odnosu na netransgene kontrole.[31][32]

S100A1 je također identificiran kao novi regulator endotelnih ćelija postishemijske angiogeneze, jer su pacijenti sa ishemijom ekstremiteta pokazali smanjenje ekspresije S100A1 u hipoksijskom tkivu.[33][34]

U melanocitnim ćelijama, ekspresija gena S100A1 može biti regulirana transkripcijskim faktorom povezanim sa mikroftalmijom (MITF).[35]

Klinički značaj

[uredi | uredi izvor]

S100A1 je pokazao djelotvornost u izvodljivosti u liječenju simptoma srčane insuficijencije na velikim, pretkliničkim modelima i ljudskim kardiomiocitima,[36][37] and thus shows great promise for clinical trials.[38][39][40][41][42][43][44]

Smanjena ekspresija ovog proteina je uključena u kardiomiopatije,[45] i terapiju zasnovanu na uređaju za pomoć lijevoj komori, ne vraćajući nivoe S100A1 kod pacijenata.[46] S100A1 se pokazao obećavajućim kao rani dijagnostički biomarker za akutnu ishemiju miokarda, koji se predstavlja s različitim vremenskim tokom u ljudskoj plazmi nakon ishemijskog događaja u odnosu na tradicionalne markere kreatin-kinaza, CKMB i troponin I.[47][48] Ovaj vanćelijski skup S100A1 koji se oslobađa od povreda, eksprimiran je kod neonatusnih mišjih kardiomiocita i pokazalo se da sprječava apoptoze putem ERK1/2-zavisnog puta, što sugerira da je oslobađanje S100A1 iz ozlijeđenih ćelija unutrašnji mehanizam preživljavanja za održivi miokard.[49] S100 se također pokazao obećavajućim kao biomarker za nekontroliranu hiperoksičnu reoksigenaciju tokom kardiopulmonalne premosnice kod novorođenčadi sa cijanoznom srčanom bolešću[50] i kod odraslih.[51] Pokazalo se da transfer gena S100A1 u projektovano srčano tkivo povećava kontraktilne performanse tkivnih implantata, sugerirajući da S100A1 može biti efikasan u olakšavanju terapije zamjene srčanog tkiva kod pacijenata sa srčanom insuficijencijom.[52] Međutim, ostaje da se utvrdi klinička efikasnost ove strategije.

Osim toga, više lijekova, uključujući Pentamidin,[11] Amlexanox, Olopatadin, Cromolyn, i Propanolol,[11] Poznato je da sevezuju za S100A1, iako su njihovi afiniteti često u srednjem mikromolarnom rasponu.

Interakcije

[uredi | uredi izvor]

S100 ima interakcije sa:

Reference

[uredi | uredi izvor]
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000160678 - Ensembl, maj 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000044080 - Ensembl, maj 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: S100A1 S100 calcium binding protein A1".
  6. ^ Morii K, Tanaka R, Takahashi Y, Minoshima S, Fukuyama R, Shimizu N, Kuwano R (Feb 1991). "Structure and chromosome assignment of human S100 alpha and beta subunit genes". Biochemical and Biophysical Research Communications. 175 (1): 185–91. doi:10.1016/S0006-291X(05)81218-5. PMID 1998503.
  7. ^ "UniProt, P23297" (jezik: eng.). Pristupljeno 4. 12. 2021.CS1 održavanje: nepoznati jezik (link)
  8. ^ Engelkamp D, Schäfer BW, Erne P, Heizmann CW (Oct 1992). "S100 alpha, CAPL, and CACY: molecular cloning and expression analysis of three calcium-binding proteins from human heart". Biochemistry. 31 (42): 10258–64. doi:10.1021/bi00157a012. PMID 1384693.
  9. ^ Maco B, Mandinova A, Dürrenberger MB, Schäfer BW, Uhrík B, Heizmann CW (2001). "Ultrastructural distribution of the S100A1 Ca2+-binding protein in the human heart". Physiological Research. 50 (6): 567–74. PMID 11829317.
  10. ^ Marenholz I, Heizmann CW, Fritz G (Oct 2004). "S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature)". Biochemical and Biophysical Research Communications. 322 (4): 1111–22. doi:10.1016/j.bbrc.2004.07.096. PMID 15336958.
  11. ^ a b c Wright, NT; Cannon, BR; Zimmer, DB; Weber, DJ (1. 5. 2009). "S100A1: Structure, Function, and Therapeutic Potential". Current Chemical Biology. 3 (2): 138–145. doi:10.2174/2212796810903020138. PMC 2771873. PMID 19890475.
  12. ^ Lenarčič Živković, M; Zaręba-Kozioł, M; Zhukova, L; Poznański, J; Zhukov, I; Wysłouch-Cieszyńska, A (23. 11. 2012). "Post-translational S-nitrosylation is an endogenous factor fine tuning the properties of human S100A1 protein". The Journal of Biological Chemistry. 287 (48): 40457–70. doi:10.1074/jbc.m112.418392. PMC 3504761. PMID 22989881.
  13. ^ Nowakowski M, Jaremko Ł, Jaremko M, Zhukov I, Belczyk A, Bierzyński A, Ejchart A (maj 2011). "Solution NMR structure and dynamics of human apo-S100A1 protein". Journal of Structural Biology. 174 (2): 391–9. doi:10.1016/j.jsb.2011.01.011. PMID 21296671.
  14. ^ Donato R (Jul 1999). "Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1450 (3): 191–231. doi:10.1016/s0167-4889(99)00058-0. PMID 10395934.
  15. ^ Wicki R, Schäfer BW, Erne P, Heizmann CW (Oct 1996). "Characterization of the human and mouse cDNAs coding for S100A13, a new member of the S100 protein family". Biochemical and Biophysical Research Communications. 227 (2): 594–9. doi:10.1006/bbrc.1996.1551. PMID 8878558.
  16. ^ Kiewitz R, Lyons GE, Schäfer BW, Heizmann CW (Dec 2000). "Transcriptional regulation of S100A1 and expression during mouse heart development". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1498 (2–3): 207–19. doi:10.1016/s0167-4889(00)00097-5. PMID 11108964.
  17. ^ a b Most P, Remppis A, Pleger ST, Löffler E, Ehlermann P, Bernotat J, Kleuss C, Heierhorst J, Ruiz P, Witt H, Karczewski P, Mao L, Rockman HA, Duncan SJ, Katus HA, Koch WJ (Sep 2003). "Transgenic overexpression of the Ca2+-binding protein S100A1 in the heart leads to increased in vivo myocardial contractile performance". The Journal of Biological Chemistry. 278 (36): 33809–17. doi:10.1074/jbc.M301788200. PMID 12777394.
  18. ^ Remppis A, Most P, Löffler E, Ehlermann P, Bernotat J, Pleger S, Börries M, Reppel M, Fischer J, Koch WJ, Smith G, Katus HA (2002). "The small EF-hand Ca2+ binding protein S100A1 increases contractility and Ca2+ cycling in rat cardiac myocytes". Basic Research in Cardiology. 97 Suppl 1 (7): I56–62. doi:10.1007/s003950200031. PMID 12479236. S2CID 25461816.
  19. ^ Most P, Bernotat J, Ehlermann P, Pleger ST, Reppel M, Börries M, Niroomand F, Pieske B, Janssen PM, Eschenhagen T, Karczewski P, Smith GL, Koch WJ, Katus HA, Remppis A (Nov 2001). "S100A1: a regulator of myocardial contractility". Proceedings of the National Academy of Sciences of the United States of America. 98 (24): 13889–94. Bibcode:2001PNAS...9813889M. doi:10.1073/pnas.241393598. PMC 61137. PMID 11717446.
  20. ^ Kettlewell S, Most P, Currie S, Koch WJ, Smith GL (Dec 2005). "S100A1 increases the gain of excitation-contraction coupling in isolated rabbit ventricular cardiomyocytes". Journal of Molecular and Cellular Cardiology. 39 (6): 900–10. doi:10.1016/j.yjmcc.2005.06.018. PMID 16236309.
  21. ^ Völkers M, Loughrey CM, Macquaide N, Remppis A, DeGeorge BR, Wegner FV, Friedrich O, Fink RH, Koch WJ, Smith GL, Most P (Feb 2007). "S100A1 decreases calcium spark frequency and alters their spatial characteristics in permeabilized adult ventricular cardiomyocytes". Cell Calcium. 41 (2): 135–43. doi:10.1016/j.ceca.2006.06.001. PMID 16919727.
  22. ^ Reppel M, Sasse P, Piekorz R, Tang M, Roell W, Duan Y, Kletke A, Hescheler J, Nürnberg B, Fleischmann BK (Oct 2005). "S100A1 enhances the L-type Ca2+ current in embryonic mouse and neonatal rat ventricular cardiomyocytes". The Journal of Biological Chemistry. 280 (43): 36019–28. doi:10.1074/jbc.M504750200. PMID 16129693.
  23. ^ a b Yamasaki R, Berri M, Wu Y, Trombitás K, McNabb M, Kellermayer MS, Witt C, Labeit D, Labeit S, Greaser M, Granzier H (Oct 2001). "Titin-actin interaction in mouse myocardium: passive tension modulation and its regulation by calcium/S100A1". Biophysical Journal. 81 (4): 2297–313. Bibcode:2001BpJ....81.2297Y. doi:10.1016/S0006-3495(01)75876-6. PMC 1301700. PMID 11566799.
  24. ^ Fukushima, H; Chung, CS; Granzier, H (2010). "Titin-isoform dependence of titin-actin interaction and its regulation by S100A1/Ca2+ in skinned myocardium". Journal of Biomedicine & Biotechnology. 2010: 727239. doi:10.1155/2010/727239. PMC 2855102. PMID 20414336.
  25. ^ Du XJ, Cole TJ, Tenis N, Gao XM, Köntgen F, Kemp BE, Heierhorst J (Apr 2002). "Impaired cardiac contractility response to hemodynamic stress in S100A1-deficient mice". Molecular and Cellular Biology. 22 (8): 2821–9. doi:10.1128/mcb.22.8.2821-2829.2002. PMC 133731. PMID 11909974.
  26. ^ Ehlermann P, Remppis A, Guddat O, Weimann J, Schnabel PA, Motsch J, Heizmann CW, Katus HA (Feb 2000). "Right ventricular upregulation of the Ca(2+) binding protein S100A1 in chronic pulmonary hypertension". Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1500 (2): 249–55. doi:10.1016/s0925-4439(99)00106-4. PMID 10657594.
  27. ^ Zimmer DB, Chessher J, Wilson GL, Zimmer WE (Dec 1997). "S100A1 and S100B expression and target proteins in type I diabetes". Endocrinology. 138 (12): 5176–83. doi:10.1210/endo.138.12.5579. PMID 9389498.
  28. ^ Tsoporis JN, Marks A, Zimmer DB, McMahon C, Parker TG (Jan 2003). "The myocardial protein S100A1 plays a role in the maintenance of normal gene expression in the adult heart". Molecular and Cellular Biochemistry. 242 (1–2): 27–33. doi:10.1023/A:1021148503861. PMID 12619862. S2CID 12957638.
  29. ^ Most P, Pleger ST, Völkers M, Heidt B, Boerries M, Weichenhan D, Löffler E, Janssen PM, Eckhart AD, Martini J, Williams ML, Katus HA, Remppis A, Koch WJ (Dec 2004). "Cardiac adenoviral S100A1 gene delivery rescues failing myocardium". The Journal of Clinical Investigation. 114 (11): 1550–63. doi:10.1172/JCI21454. PMC 529280. PMID 15578088.
  30. ^ Pleger ST, Remppis A, Heidt B, Völkers M, Chuprun JK, Kuhn M, Zhou RH, Gao E, Szabo G, Weichenhan D, Müller OJ, Eckhart AD, Katus HA, Koch WJ, Most P (Dec 2005). "S100A1 gene therapy preserves in vivo cardiac function after myocardial infarction". Molecular Therapy. 12 (6): 1120–9. doi:10.1016/j.ymthe.2005.08.002. PMID 16168714.
  31. ^ Most P, Seifert H, Gao E, Funakoshi H, Völkers M, Heierhorst J, Remppis A, Pleger ST, DeGeorge BR, Eckhart AD, Feldman AM, Koch WJ (Sep 2006). "Cardiac S100A1 protein levels determine contractile performance and propensity toward heart failure after myocardial infarction". Circulation. 114 (12): 1258–68. doi:10.1161/CIRCULATIONAHA.106.622415. PMID 16952982.
  32. ^ Pleger ST, Most P, Boucher M, Soltys S, Chuprun JK, Pleger W, Gao E, Dasgupta A, Rengo G, Remppis A, Katus HA, Eckhart AD, Rabinowitz JE, Koch WJ (maj 2007). "Stable myocardial-specific AAV6-S100A1 gene therapy results in chronic functional heart failure rescue". Circulation. 115 (19): 2506–15. doi:10.1161/CIRCULATIONAHA.106.671701. PMID 17470693.
  33. ^ Descamps, B; Madeddu, P; Emanueli, C (4. 1. 2013). "S100A1: A novel and essential molecular component for postischemic angiogenesis". Circulation Research. 112 (1): 3–5. doi:10.1161/circresaha.112.281022. PMC 3616364. PMID 23287450.
  34. ^ Most, P; Lerchenmüller, C; Rengo, G; Mahlmann, A; Ritterhoff, J; Rohde, D; Goodman, C; Busch, CJ; Laube, F; Heissenberg, J; Pleger, ST; Weiss, N; Katus, HA; Koch, WJ; Peppel, K (4. 1. 2013). "S100A1 deficiency impairs postischemic angiogenesis via compromised proangiogenic endothelial cell function and nitric oxide synthase regulation". Circulation Research. 112 (1): 66–78. doi:10.1161/circresaha.112.275156. PMC 3760372. PMID 23048072.
  35. ^ Hoek KS, Schlegel NC, Eichhoff OM, Widmer DS, Praetorius C, Einarsson SO, Valgeirsdottir S, Bergsteinsdottir K, Schepsky A, Dummer R, Steingrimsson E (Dec 2008). "Novel MITF targets identified using a two-step DNA microarray strategy". Pigment Cell & Melanoma Research. 21 (6): 665–76. doi:10.1111/j.1755-148X.2008.00505.x. PMID 19067971. S2CID 24698373.
  36. ^ Brinks, H; Rohde, D; Voelkers, M; Qiu, G; Pleger, ST; Herzog, N; Rabinowitz, J; Ruhparwar, A; Silvestry, S; Lerchenmüller, C; Mather, PJ; Eckhart, AD; Katus, HA; Carrel, T; Koch, WJ; Most, P (23. 8. 2011). "S100A1 genetically targeted therapy reverses dysfunction of human failing cardiomyocytes". Journal of the American College of Cardiology. 58 (9): 966–73. doi:10.1016/j.jacc.2011.03.054. PMC 3919460. PMID 21851887.
  37. ^ Pleger, ST; Shan, C; Ksienzyk, J; Bekeredjian, R; Boekstegers, P; Hinkel, R; Schinkel, S; Leuchs, B; Ludwig, J; Qiu, G; Weber, C; Raake, P; Koch, WJ; Katus, HA; Müller, OJ; Most, P (20. 7. 2011). "Cardiac AAV9-S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model". Science Translational Medicine. 3 (92): 92ra64. doi:10.1126/scitranslmed.3002097. PMC 4095769. PMID 21775667.
  38. ^ Belmonte, SL; Margulies, KB; Blaxall, BC (23. 8. 2011). "S100A1: Another Step Toward Therapeutic Development for Heart Failure". Journal of the American College of Cardiology. 58 (9): 974–6. doi:10.1016/j.jacc.2011.04.032. PMID 21851888.
  39. ^ Rohde, D; Brinks, H; Ritterhoff, J; Qui, G; Ren, S; Most, P (maj 2011). "S100A1 gene therapy for heart failure: a novel strategy on the verge of clinical trials". Journal of Molecular and Cellular Cardiology. 50 (5): 777–84. doi:10.1016/j.yjmcc.2010.08.012. PMID 20732326.
  40. ^ Rohde, D; Ritterhoff, J; Voelkers, M; Katus, HA; Parker, TG; Most, P (oktobar 2010). "S100A1: a multifaceted therapeutic target in cardiovascular disease". Journal of Cardiovascular Translational Research. 3 (5): 525–37. doi:10.1007/s12265-010-9211-9. PMC 2933808. PMID 20645037.
  41. ^ Kraus, C; Rohde, D; Weidenhammer, C; Qiu, G; Pleger, ST; Voelkers, M; Boerries, M; Remppis, A; Katus, HA; Most, P (oktobar 2009). "S100A1 in cardiovascular health and disease: closing the gap between basic science and clinical therapy". Journal of Molecular and Cellular Cardiology. 47 (4): 445–55. doi:10.1016/j.yjmcc.2009.06.003. PMC 2739260. PMID 19538970.
  42. ^ Ritterhoff, J; Most, P (juni 2012). "Targeting S100A1 in heart failure". Gene Therapy. 19 (6): 613–21. doi:10.1038/gt.2012.8. PMID 22336719. S2CID 22951165.
  43. ^ Kairouz, V; Lipskaia, L; Hajjar, RJ; Chemaly, ER (april 2012). "Molecular targets in heart failure gene therapy: current controversies and translational perspectives". Annals of the New York Academy of Sciences. 1254 (1): 42–50. Bibcode:2012NYASA1254...42K. doi:10.1111/j.1749-6632.2012.06520.x. PMC 3470446. PMID 22548568.
  44. ^ Zouein, FA; Booz, GW (2013). "AAV-mediated gene therapy for heart failure: enhancing contractility and calcium handling". F1000Prime Reports. 5: 27. doi:10.12703/p5-27. PMC 3732072. PMID 23967378.
  45. ^ Remppis, A; Greten, T; Schäfer, BW; Hunziker, P; Erne, P; Katus, HA; Heizmann, CW (11. 10. 1996). "Altered expression of the Ca(2+)-binding protein S100A1 in human cardiomyopathy". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1313 (3): 253–7. doi:10.1016/0167-4889(96)00097-3. PMID 8898862.
  46. ^ Bennett, MK; Sweet, WE; Baicker-McKee, S; Looney, E; Karohl, K; Mountis, M; Tang, WH; Starling, RC; Moravec, CS (juli 2014). "S100A1 in human heart failure: lack of recovery following left ventricular assist device support". Circulation: Heart Failure. 7 (4): 612–8. doi:10.1161/circheartfailure.113.000849. PMC 4102621. PMID 24842913.
  47. ^ Kiewitz, R; Acklin, C; Minder, E; Huber, PR; Schäfer, BW; Heizmann, CW (11. 8. 2000). "S100A1, a new marker for acute myocardial ischemia". Biochemical and Biophysical Research Communications. 274 (3): 865–71. doi:10.1006/bbrc.2000.3229. PMID 10924368.
  48. ^ Rohde, D; Schön, C; Boerries, M; Didrihsone, I; Ritterhoff, J; Kubatzky, KF; Völkers, M; Herzog, N; Mähler, M; Tsoporis, JN; Parker, TG; Linke, B; Giannitsis, E; Gao, E; Peppel, K; Katus, HA; Most, P (15. 5. 2014). "S100A1 is released from ischemic cardiomyocytes and signals myocardial damage via Toll-like receptor 4". EMBO Molecular Medicine. 6 (6): 778–94. doi:10.15252/emmm.201303498. PMC 4203355. PMID 24833748.
  49. ^ Most, P; Boerries, M; Eicher, C; Schweda, C; Ehlermann, P; Pleger, ST; Loeffler, E; Koch, WJ; Katus, HA; Schoenenberger, CA; Remppis, A (28. 11. 2003). "Extracellular S100A1 protein inhibits apoptosis in ventricular cardiomyocytes via activation of the extracellular signal-regulated protein kinase 1/2 (ERK1/2)". The Journal of Biological Chemistry. 278 (48): 48404–12. doi:10.1074/jbc.m308587200. PMID 12960148.
  50. ^ Matheis, G; Abdel-Rahman, U; Braun, S; Wimmer-Greinecker, G; Esmaili, A; Seitz, U; Bastanier, CK; Moritz, A; Hofstetter, R (oktobar 2000). "Uncontrolled reoxygenation by initiating cardiopulmonary bypass is associated with higher protein S100 in cyanotic versus acyanotic patients". The Thoracic and Cardiovascular Surgeon. 48 (5): 263–8. doi:10.1055/s-2000-7879. PMID 11100757.
  51. ^ Brett, W; Mandinova, A; Remppis, A; Sauder, U; Rüter, F; Heizmann, CW; Aebi, U; Zerkowski, HR (15. 6. 2001). "Translocation of S100A1(1) calcium binding protein during heart surgery". Biochemical and Biophysical Research Communications. 284 (3): 698–703. doi:10.1006/bbrc.2001.4996. PMID 11396958.
  52. ^ Remppis, A; Pleger, ST; Most, P; Lindenkamp, J; Ehlermann, P; Schweda, C; Löffler, E; Weichenhan, D; Zimmermann, W; Eschenhagen, T; Koch, WJ; Katus, HA (april 2004). "S100A1 gene transfer: a strategy to strengthen engineered cardiac grafts". The Journal of Gene Medicine. 6 (4): 387–94. doi:10.1002/jgm.513. PMID 15079813. S2CID 30629576.
  53. ^ Landar A, Caddell G, Chessher J, Zimmer DB (Sep 1996). "Identification of an S100A1/S100B target protein: phosphoglucomutase". Cell Calcium. 20 (3): 279–85. doi:10.1016/S0143-4160(96)90033-0. PMID 8894274.
  54. ^ a b Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (Oct 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. Bibcode:2005Natur.437.1173R. doi:10.1038/nature04209. PMID 16189514. S2CID 4427026.
  55. ^ Deloulme JC, Assard N, Mbele GO, Mangin C, Kuwano R, Baudier J (Nov 2000). "S100A6 and S100A11 are specific targets of the calcium- and zinc-binding S100B protein in vivo". The Journal of Biological Chemistry. 275 (45): 35302–10. doi:10.1074/jbc.M003943200. PMID 10913138.
  56. ^ Yang Q, O'Hanlon D, Heizmann CW, Marks A (Feb 1999). "Demonstration of heterodimer formation between S100B and S100A6 in the yeast two-hybrid system and human melanoma". Experimental Cell Research. 246 (2): 501–9. doi:10.1006/excr.1998.4314. PMID 9925766.
  57. ^ Wang G, Rudland PS, White MR, Barraclough R (Apr 2000). "Interaction in vivo and in vitro of the metastasis-inducing S100 protein, S100A4 (p9Ka) with S100A1". The Journal of Biological Chemistry. 275 (15): 11141–6. doi:10.1074/jbc.275.15.11141. PMID 10753920.
  58. ^ Holakovska B, Grycova L, Jirku M, Sulc M, Bumba L, Teisinger J (maj 2012). "Calmodulin and S100A1 protein interact with N terminus of TRPM3 channel". The Journal of Biological Chemistry. 287 (20): 16645–55. doi:10.1074/jbc.M112.350686. PMC 3351314. PMID 22451665.
  59. ^ Wright, NT; Prosser, BL; Varney, KM; Zimmer, DB; Schneider, MF; Weber, DJ (26. 9. 2008). "S100A1 and calmodulin compete for the same binding site on ryanodine receptor". The Journal of Biological Chemistry. 283 (39): 26676–83. doi:10.1074/jbc.m804432200. PMC 2546546. PMID 18650434.
  60. ^ Prosser, BL; Hernández-Ochoa, EO; Schneider, MF (oktobar 2011). "S100A1 and calmodulin regulation of ryanodine receptor in striated muscle". Cell Calcium. 50 (4): 323–31. doi:10.1016/j.ceca.2011.06.001. PMC 3185186. PMID 21784520.
  61. ^ a b Kiewitz R, Acklin C, Schäfer BW, Maco B, Uhrík B, Wuytack F, Erne P, Heizmann CW (Jun 2003). "Ca2+ -dependent interaction of S100A1 with the sarcoplasmic reticulum Ca2+ -ATPase2a and phospholamban in the human heart". Biochemical and Biophysical Research Communications. 306 (2): 550–7. doi:10.1016/s0006-291x(03)00987-2. PMID 12804600.
  62. ^ Most P, Boerries M, Eicher C, Schweda C, Völkers M, Wedel T, Söllner S, Katus HA, Remppis A, Aebi U, Koch WJ, Schoenenberger CA (Jan 2005). "Distinct subcellular location of the Ca2+-binding protein S100A1 differentially modulates Ca2+-cycling in ventricular rat cardiomyocytes". Journal of Cell Science. 118 (Pt 2): 421–31. doi:10.1242/jcs.01614. PMID 15654019.
  63. ^ Prosser, BL; Wright, NT; Hernãndez-Ochoa, EO; Varney, KM; Liu, Y; Olojo, RO; Zimmer, DB; Weber, DJ; Schneider, MF (22. 2. 2008). "S100A1 binds to the calmodulin-binding site of ryanodine receptor and modulates skeletal muscle excitation-contraction coupling". The Journal of Biological Chemistry. 283 (8): 5046–57. doi:10.1074/jbc.m709231200. PMC 4821168. PMID 18089560.

Dopunska literatura

[uredi | uredi izvor]

Vanjski linkovi

[uredi | uredi izvor]